在平面直角坐標系中,O為坐標原點,已知點,,
若點C滿足,點C的軌跡與拋物線交于A、B兩點.
(I)求證:;
(II)在軸正半軸上是否存在一定點,使得過點P的任意一條拋物線的弦的長度是原點到該弦中點距離的2倍,若存在,求出m的值;若不存在,請說明理由.
 (I)證明見解析              
。↖I)存在
(I)設,由知,點C的軌跡為.  2分
消y得:
,,則,,          
所以,
所以,于是.              
。↖I)假設存在過點P的弦EF符合題意,則此弦的斜率不為零,設此弦所在直線的方程為
消x得:.設,
,.                         
因為過點P作拋物線的弦的長度是原點到弦的中點距離的2倍,
所以,  
所以,所以存在.         
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
設點在直線上,過點作雙曲線的兩條切線,切點為,定點。

(1)求證:三點共線;
(2)過點作直線的垂線,垂足為,試求的重心所在曲線方程。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓W的中心在原點,焦點在軸上,離心率為,兩條準線間的距離為6. 橢圓W的左焦點為,過左準線與軸的交點任作一條斜率不為零的直線與橢圓W交于不同的兩點、,點關于軸的對稱點為.
(Ⅰ)求橢圓W的方程;
(Ⅱ)求證: ();
(Ⅲ)求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

橢圓C的中心為坐標原點O,焦點在y軸上,離心率e = ,橢圓上的點到焦點的最短距離為1-, 直線ly軸交于點P(0,m),與橢圓C交于相異兩點A、B,且
(1)求橢圓方程;
(2)若,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題



(1)求動圓圓心M的軌跡方程;
(2)過原點且傾斜角為的直線交(1)中軌跡P、Q兩點,PQ的中垂線交軸N. 求三角形PQN的面積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

拋物線y=x2的一組斜率為2的平行弦的中點的軌跡是(  )
A.圓B.橢圓C.拋物線D.射線(不含端點)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖,在中,,AC、BC邊上的高分別為BD、AE,則以A、B為焦點,且過D、E的橢圓與雙曲線的離心率的倒數(shù)和為      (   )
A.           B.     C.          D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若橢圓的離心率是,則雙曲線的離心率是___________

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若拋物線y2=mx與橢圓=1有一個共同的焦點,則m=______________.

查看答案和解析>>

同步練習冊答案