在平面直角坐標系中,O為坐標原點,已知點
,
,
若點C滿足
,點C的軌跡與拋物線
交于A、B兩點.
(I)求證:
;
(II)在
軸正半軸上是否存在一定點
,使得過點P的任意一條拋物線的弦的長度是原點到該弦中點距離的2倍,若存在,求出m的值;若不存在,請說明理由.
(I)證明見解析
。↖I)存在
.
(I)設
,由
知,點C的軌跡為
. 2分
由
消y得:
.
設
,
,則
,
,
所以
,
所以
,于是
.
。↖I)假設存在過點P的弦EF符合題意,則此弦的斜率不為零,設此弦所在直線的方程為
.
由
消x得:
.設
,
,
則
,
.
因為過點P作拋物線的弦的長度是原點到弦的中點距離的2倍,
所以
即
,
所以
得
,所以存在
.
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)
設點
在直線
上,過點
作雙曲線
的兩條切線
,切點為
,定點
。
(1)求證:三點
共線;
(2)過點
作直線
的垂線,垂足為
,試求
的重心
所在曲線方程。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓W的中心在原點,焦點在
軸上,離心率為
,兩條準線間的距離為6. 橢圓W的左焦點為
,過左準線與
軸的交點
任作一條斜率不為零的直線
與橢圓W交于不同的兩點
、
,點
關于
軸的對稱點為
.
(Ⅰ)求橢圓W的方程;
(Ⅱ)求證:
(
);
(Ⅲ)求
面積
的最大值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
橢圓
C的中心為坐標原點
O,焦點在
y軸上,離心率
e =
,橢圓上的點到焦點的最短距離為1-
, 直線
l與
y軸交于點
P(0,
m),與橢圓
C交于相異兩點
A、B,且
.
(1)求橢圓方程;
(2)若
,求
m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(1)求動圓圓心M的軌跡方程;
(2)過原點且傾斜角為
的直線交(1)中軌跡P、Q兩點,PQ的中垂線交
軸N. 求三角形PQN的面積.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
拋物線
y=
x2的一組斜率為2的平行弦的中點的軌跡是( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
如圖,在
中,
,AC、BC邊上的高分別為BD、AE,則以A、B為焦點,且過D、E的橢圓與雙曲線的離心率的倒數(shù)和為 ( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
若橢圓
的離心率是
,則雙曲線
的離心率是___________
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
若拋物線y
2=mx與橢圓
=1有一個共同的焦點,則m=______________.
查看答案和解析>>