正方體ABCD-A1B1C1D1中,E為A1C1的中點(diǎn),則直線CE垂直于( 。
A.直線ACB.直線B1D1C.直線A1D1D.直線A1A

如圖,直線CE垂直于直線B1D1

事實(shí)上,∵AC1為正方體,∴A1B1C1D1為正方形,連結(jié)B1D1,
又∵E為為A1C1的中點(diǎn),∴E∈B1D1
∴B1D1⊥C1E,
CC1⊥面A1B1C1D1,∴CC1⊥B1D1,
又CC1∩C1E=C1,∴B1D1⊥面CC1E,而CE?面CC1E,∴直線CE垂直于直線B1D1
故選:B.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1,在Rt△ABC中,∠C=90°,BC=3,AC=6.D、E分別是AC、AB上的點(diǎn),且DEBC,將△ADE沿DE折起到△A1DE的位置,使A1D⊥CD,如圖2.
(1)求證:BC平面A1DE;
(2)求證:BC⊥平面A1DC;
(3)當(dāng)D點(diǎn)在何處時(shí),A1B的長度最小,并求出最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如果兩個(gè)平面分別平行于第三個(gè)平面,那么這兩個(gè)平面的位置關(guān)系( 。
A.平行B.相交C.異面D.以上都不對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在三棱柱ABC-A1B1C1中,△ABC為等邊三角形,側(cè)棱AA1⊥平面ABC,AB=2,AA1=2
3
,D、E分別為AA1、BC1的中點(diǎn).
(Ⅰ)求證:DE⊥平面BB1C1C;
(Ⅱ)求三棱錐C-BC1D的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

P是平行四邊形ABCD所在平面外的一點(diǎn),若P到四邊的距離都相等,則四邊形ABCD( 。
A.是正方形B.是長方形
C.有一個(gè)內(nèi)切圓D.有一個(gè)外接圓

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖在四棱錐P-ABCD中,底面ABCD是正方形,PA⊥底面ABCD,垂足為點(diǎn)A,PA=AB=2,點(diǎn)M,N分別是PD,PB的中點(diǎn).
(I)求證:PB平面ACM;
(II)求證:MN⊥平面PAC;
(III)求四面體A-MBC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,在長方體ABCD-A1B1C1D1中,AB=1,BC=2,CC1=5,M為棱CC1上一點(diǎn).
(1)若C1M=
3
2
,求異面直線A1M和C1D1所成角的正切值;
(2)是否存在這樣的點(diǎn)M使得BM⊥平面A1B1M?若存在,求出C1M的長;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在底面為菱形的四棱錐P-ABCD中,∠ABC=60°,PA=AC=a,PB=PD=
2
a,點(diǎn)E在PD上,且PE:ED=2:1.
(1)求證:PA⊥平面ABCD;
(2)求面EAC與面DAC所成的二面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)α、β為兩個(gè)不同的平面,直線l?α,則“l(fā)⊥β”是“α⊥β”成立的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊答案