分析 (1)利用等差數(shù)列與等比數(shù)列的通項(xiàng)公式即可得出.
(2)利用“裂項(xiàng)求和”方法即可得出.
解答 解:(1)設(shè)等差數(shù)列{an}的公差為d,由a2+1,a4+1,a8+1,
得(3+3d)2=(3+d)(3+7d),
解得d=3或d=0(舍),
故an=a1+(n-1)d=7+3(n-1)=3n+4.
(2)由(1)知${b_n}=\frac{3}{3n-1}$,${b_n}{b_{n+1}}=\frac{9}{{({3n-1})({3n+2})}}=3({\frac{1}{3n-1}-\frac{1}{3n+2}})$,${b_1}{b_2}+{b_2}{b_3}+…+{b_n}{b_{n+1}}=3({\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+…+\frac{1}{3n-1}-\frac{1}{3n+2}})=3({\frac{1}{2}-\frac{1}{3n+2}})=\frac{9n}{6n+4}$,
依題有$\frac{9n}{6n+4}=\frac{45}{32}$解得n=10.
點(diǎn)評 本題考查了等差數(shù)列與等比數(shù)列的通項(xiàng)公式、“裂項(xiàng)求和”方法,考查了推理能力與計算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ?x∈R,x2+x-1<0 | B. | ?x∈R,x2+x-1≤0 | ||
C. | ?x0∉R,x02+x0-1=0 | D. | ?x0∈R,x02+x0-1≤0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | $-\frac{1}{5}$ | C. | $-\frac{2}{3}$ | D. | $-\frac{1}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(1)<f(-2)<f(3) | B. | f(3)<f(-2)<f(1) | C. | f(-2)<f(1)<f(3) | D. | f(3)<f(1)<f(-2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com