【題目】在貫徹中共中央、國務(wù)院關(guān)于精準扶貧政策的過程中,某單位在某市定點幫扶某村戶貧困戶.為了做到精準幫扶,工作組對這戶村民的年收入情況、危舊房情況、患病情況等進行調(diào)查,并把調(diào)查結(jié)果轉(zhuǎn)化為各戶的貧困指標.將指標按照,,,,分成五組,得到如圖所示的頻率分布直方圖.規(guī)定若,則認定該戶為“絕對貧困戶”,否則認定該戶為“相對貧困戶”;當時,認定該戶為“亟待幫住戶”.工作組又對這戶家庭的受教育水平進行評測,家庭受教育水平記為“良好”與“不好”兩種.
(1)完成下面的列聯(lián)表,并判斷是否有的把握認為絕對貧困戶數(shù)與受教育水平不好有關(guān):
受教育水平良好 | 受教育水平不好 | 總計 | |
絕對貧困戶 | |||
相對貧困戶 | |||
總計 |
(2)上級部門為了調(diào)查這個村的特困戶分布情況,在貧困指標處于的貧困戶中,隨機選取兩戶,用表示所選兩戶中“亟待幫助戶”的戶數(shù),求的分布列和數(shù)學(xué)期望.
附:,其中.
【答案】(1)列聯(lián)表見解析,有;(2)分布列見解析,.
【解析】
(1)根據(jù)題意填寫列聯(lián)表,計算,對照臨界值得出結(jié)論;
(2)根據(jù)題意可得貧困指標在的貧困戶共有(戶),“亟待幫助戶”共有(戶),
則的可能值為,,,列出分布列,計算期望值即可.
(1)由題意可知,絕對貧困戶有(戶),可得出如列聯(lián)表:
受教育水平 良好 | 受教育水平 不好 | 總計 | |
絕對貧困戶 | |||
相對貧困戶 | |||
總計 |
.
故有的把握認為絕對貧困戶數(shù)與受教育水平不好有關(guān).
(2)貧困指標在的貧困戶共有(戶),
“亟待幫助戶”共有(戶),
依題意的可能值為,,,
,,
,
則的分布列為
故.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】國慶70周年閱兵式上的女兵們是一道靚麗的風(fēng)景線,每一名女兵都是經(jīng)過層層篩選才最終入選受閱方隊,篩選標準非常嚴格,例如要求女兵身高(單位:cm)在區(qū)間內(nèi).現(xiàn)從全體受閱女兵中隨機抽取200人,對她們的身高進行統(tǒng)計,將所得數(shù)據(jù)分為,,,,五組,得到如圖所示的頻率分布直方圖,其中第三組的頻數(shù)為75,最后三組的頻率之和為0.7.
(1)請根據(jù)頻率分布直方圖估計樣本的平均數(shù)和方差(同一組中的數(shù)據(jù)用該組區(qū)間的中點值代表);
(2)根據(jù)樣本數(shù)據(jù),可認為受閱女兵的身高X(cm)近似服從正態(tài)分布,其中近似為樣本平均數(shù),近似為樣本方差.
(i)求;
(ii)若從全體受閱女兵中隨機抽取10人,求這10人中至少有1人的身高在174.28cm以上的概率.
參考數(shù)據(jù):若,則,,,,,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論的單調(diào)性;
(2)若函數(shù)在上有且只有一個零點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了研究家用轎車在高速公路上的車速情況,交通部門對100名家用轎車駕駛員進行調(diào)查,得到其在高速公路上行駛時的平均車速情況為:在55名男性駕駛員中,平均車速超過100的有40人;在45名女性駕駛員中,平均車速不超過100的有25人.
(1)完成下面的列聯(lián)表,并判斷是否有99.5%的把握認為平均車速超過100的人與性別有關(guān).
平均車速超過100人數(shù) | 平均車速不超過100人數(shù) | 合計 | |
男性駕駛員人數(shù) | |||
女性駕駛員人數(shù) | |||
合計 |
(2)以上述數(shù)據(jù)樣本來估計總體,現(xiàn)從高速公路上行駛的大量家用轎車中隨機抽取3輛,記這3輛車中駕駛員為男性且車速超過100的車輛數(shù)為,若每次抽取的結(jié)果是相互獨立的,求的分布列和數(shù)學(xué)期望.
參考公式與數(shù)據(jù):,其中
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)生為了測試煤氣灶燒水如何節(jié)省煤氣的問題設(shè)計了一個實驗,并獲得了煤氣開關(guān)旋鈕旋轉(zhuǎn)的弧度數(shù)與燒開一壺水所用時間的一組數(shù)據(jù),且作了一定的數(shù)據(jù)處理(如下表),得到了散點圖(如下圖).
1.47 | 20.6 | 0.78 | 2.35 | 0.81 | -19.3 | 16.2 |
表中.
(1)根據(jù)散點圖判斷,與哪一個更適宜作燒水時間關(guān)于開關(guān)旋鈕旋轉(zhuǎn)的弧度數(shù)的回歸方程類型?(不必說明理由)
(2)根據(jù)判斷結(jié)果和表中數(shù)據(jù),建立關(guān)于的回歸方程;
(3)若旋轉(zhuǎn)的弧度數(shù)與單位時間內(nèi)煤氣輸出量成正比,那么為多少時,燒開一壺水最省煤氣?
附:對于一組數(shù)據(jù),,,其回歸直線的斜率和截距的最小二乘估計分別為,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義首項為1且公比為正數(shù)的等比數(shù)列為“M-數(shù)列”.
(1)已知等比數(shù)列{an}滿足:,求證:數(shù)列{an}為“M-數(shù)列”;
(2)已知數(shù)列{bn}滿足:,其中Sn為數(shù)列{bn}的前n項和.
①求數(shù)列{bn}的通項公式;
②設(shè)m為正整數(shù),若存在“M-數(shù)列”{cn},對任意正整數(shù)k,當k≤m時,都有成立,求m的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線的焦點為F(1,0),E是拋物線的準線與x軸的交點,直線AB經(jīng)過焦點F且與拋物線交于A,B兩點,直線AE,BE分別交y軸于M,N兩點,記,的面積分別為.
(1)求拋物線C的標準方程;
(2)是否為定值?若是,求出該定值;若不是,請說明理由;
(3)求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當時,求函數(shù)在點處的切線方程.
(2)若對任意的恒成立,求的值.
(3)在(2)的條件下,記,證明:存在唯一的極大值點,且.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線:的焦點為,拋物線上的點到準線的最小距離為2.
(1)求拋物線的方程;
(2)若過點作互相垂直的兩條直線,,與拋物線交于,兩點,與拋物線交于,兩點,,分別為弦,的中點,求的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com