拋物線在點(diǎn),處的切線垂直相交于點(diǎn),直線與橢圓相交于,兩點(diǎn).

(1)求拋物線的焦點(diǎn)與橢圓的左焦點(diǎn)的距離;
(2)設(shè)點(diǎn)到直線的距離為,試問:是否存在直線,使得,,成等比數(shù)列?若存在,求直線的方程;若不存在,請(qǐng)說明理由.

(1);(2)不存在.

解析試題分析:(1)分別求出拋物線與橢圓的焦點(diǎn),利用兩點(diǎn)間距離公式求解;(2)設(shè)直線與拋物線相交于與橢圓相交于,,所以直線與拋物線方程聯(lián)立,得到然后利用,求出切線的斜率,利用切線垂直,,解出m,然后分別設(shè)出過點(diǎn)的切線方程,求出交點(diǎn)的坐標(biāo),利用點(diǎn)到直線的距離公式求,直線與曲線相交的弦長公式求,若,,成等比數(shù)列,則,化簡等式,通過看方程實(shí)根情況.
試題解析:(I)拋物線的焦點(diǎn),               1分
橢圓的左焦點(diǎn),           2分
.                       3分
(II)設(shè)直線,,,,,
,得,        4分
,
,得,
故切線,的斜率分別為,
再由,得,

,這說明直線過拋物線的焦點(diǎn).       7分
,得,
,即.     8分
于是點(diǎn)到直線的距離.    9分
,得,     10分
從而,       11分
同理,.                  12分
,成等比數(shù)列,則,              13分

化簡整理,得,此方程無實(shí)根,
所以不存在直線,使得,,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知△的兩個(gè)頂點(diǎn)的坐標(biāo)分別是,,且所在直線的斜率之積等于
(1)求頂點(diǎn)的軌跡的方程,并判斷軌跡為何種圓錐曲線;
(2)當(dāng)時(shí),過點(diǎn)的直線交曲線兩點(diǎn),設(shè)點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為(不重合), 試問:直線軸的交點(diǎn)是否是定點(diǎn)?若是,求出定點(diǎn),若不是,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,是橢圓的左、右頂點(diǎn),橢圓的離心率為,右準(zhǔn)線的方程為.

(1)求橢圓方程;
(2)設(shè)是橢圓上異于的一點(diǎn),直線于點(diǎn),以為直徑的圓記為. ①若恰好是橢圓的上頂點(diǎn),求截直線所得的弦長;
②設(shè)與直線交于點(diǎn),試證明:直線軸的交點(diǎn)為定點(diǎn),并求該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知?jiǎng)又本與橢圓交于兩不同點(diǎn),且△的面積=,其中為坐標(biāo)原點(diǎn).
(1)證明均為定值;
(2)設(shè)線段的中點(diǎn)為,求的最大值;
(3)橢圓上是否存在點(diǎn),使得?若存在,判斷△的形狀;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(1)已知點(diǎn),過點(diǎn)的直線與過點(diǎn)的直線相交于點(diǎn),設(shè)直線的斜率為,直線的斜率為,如果,求點(diǎn)的軌跡;
(2)用正弦定理證明三角形外角平分線定理:如果在中,的外角平分線與邊的延長線相交于點(diǎn),則.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的左、右焦點(diǎn)分別為,橢圓上的點(diǎn)滿足,且的面積
(Ⅰ)求橢圓的方程;
(Ⅱ)是否存在直線,使與橢圓交于不同的兩點(diǎn)、,且線段恰被直線平分?若存在,求出的斜率取值范圍;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知圓過定點(diǎn),圓心在拋物線上,為圓軸的交點(diǎn).
(1)當(dāng)圓心是拋物線的頂點(diǎn)時(shí),求拋物線準(zhǔn)線被該圓截得的弦長.
(2)當(dāng)圓心在拋物線上運(yùn)動(dòng)時(shí),是否為一定值?請(qǐng)證明你的結(jié)論.
(3)當(dāng)圓心在拋物線上運(yùn)動(dòng)時(shí),記,,求的最大值,并求出此時(shí)圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)F1F2分別是橢圓Ex2=1(0<b<1)的左、右焦點(diǎn),過F1的直線lE相交于A,B兩點(diǎn),且|AF2|,|AB|,|BF2|成等差數(shù)列.
(1)求|AB|;
(2)若直線l的斜率為1,求b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知離心率的橢圓一個(gè)焦點(diǎn)為.
(1)求橢圓的方程;
(2) 若斜率為1的直線交橢圓兩點(diǎn),且,求直線方程.

查看答案和解析>>

同步練習(xí)冊答案