13.已知遞增等差數(shù)列{an}的前n項和為Sn,a3a5=45,S7=49,則數(shù)列$\left\{{\frac{1}{{{a_n}{a_{n+1}}}}}\right\}$的前n項和為(  )
A.$\frac{2n}{2n-1}$B.$\frac{n}{2n-1}$C.$\frac{2n}{2n+1}$D.$\frac{n}{2n+1}$

分析 通過設{an}的公差為d,利用a3a5=45,S7=49,聯(lián)立方程組,進而可求出第四項和公差,然后求解通項公式,化簡數(shù)列的通項公式,裂項、并項相加求和即可.

解答 解:(1)設{an}的公差為d,則由題意遞增等差數(shù)列{an}的前n項和為Sn,a3a5=45,S7=49,知a4=7,
(7-d)(7+d)=45,即-d2=-4
解得d=2,
∴an=7+(n-4)×2=2n-1.
(2)∵$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}$($\frac{1}{2n-1}-\frac{1}{2n+1}$),
∴數(shù)列$\left\{{\frac{1}{{{a_n}{a_{n+1}}}}}\right\}$的前n項和為:$\frac{1}{2}[1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+…+\frac{1}{2n-1}-\frac{1}{2n+1}]$=$\frac{1}{2}(1-\frac{1}{2n+1})$=$\frac{n}{2n+1}$.
故選:D.

點評 本題考查數(shù)列的通項及前n項和,考查裂項相消法,注意解題方法的積累,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

3.高三某班一學習小組的A、B、C、D四位同學周五下午參加學校的課外活動,在課外活動中,有一人在打籃球,有一人在畫畫,有一人在跳舞,另外一人在散步,①A不在散步,也不在打籃球;②B不在跳舞,也不在散步;③“C在散步”是“A在跳舞”的充分條件;④D不在打籃球,也不在散步;⑤C不在跳舞,也不在打籃球.以上命題都是真命題,那么D在畫畫.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知f(x)=sin2x+2$\sqrt{3}sinxcosx-{cos^2}$x.
(1)求f(x)的最大值及取得最大值時,自變量x的取值集合;
(2)指出函數(shù)y=f(x)的圖象可以由y=sinx的圖象經(jīng)過哪些變換得到;
(3)當x∈[0,t]時,函數(shù)y=f(x)的值域為[-1,2],求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.在等差數(shù)列{an}中,公差d≠0,且a1,a4,a10成等比數(shù)列,則$\frac{{a}_{1}}iahzwjw$的值為3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.在△ABC中,邊AB,AC所在直線的方程分別為2x-y+7=0,x-y+6=0,已知M(1,6)是BC邊上一點.
(1)若AM為BC邊上的高,求直線BC的方程;
(2)若AM為BC邊的中線,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.已知角α的終邊在直線y=3x上,則sin2α+sin2α=$\frac{11}{10}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.設集合S={1,2,3,4,5},從S的所有非空子集中隨機選出一個,設所取出的非空子集的最大元素為ξ,則ξ的數(shù)學期望為$\frac{129}{31}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.生產(chǎn)某種產(chǎn)品的年固定成本為250萬元,每生產(chǎn)x千件,需要另投入成本為C(x),當年產(chǎn)量不足80千件時,C(x)=$\frac{1}{360}{x^3}$+20x(萬元),當年產(chǎn)量不小于80千件時,C(x)=51x+$\frac{10000}{x}$-1450(萬元),通過市場分析,每件商品售價為0.05萬元時,該商品能全部售完.
(1)寫出年利潤L(x)(萬元)關于年產(chǎn)量x(千件)的函數(shù)解析式(利潤=銷售額-成本);
(2)年產(chǎn)量為多少千件時,生產(chǎn)該商品獲得的利潤最大.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<$\frac{π}{2}$)的部分圖象如圖所示,則f(0)的值為$\sqrt{2}$.

查看答案和解析>>

同步練習冊答案