【題目】已知函數(shù),.
(1)若,求的極大值點(diǎn);
(2)若函數(shù),判斷的單調(diào)性;
(3)若函數(shù)有兩個(gè)極值點(diǎn),求證:.
【答案】(1)(2)見(jiàn)解析(3)見(jiàn)解析
【解析】
(1)求導(dǎo),求出的單調(diào)區(qū)間后即可得解;
(2)由題意得,根據(jù)、、、分類(lèi)討論的正負(fù),即可得解;
(3)由可得,且,則可得,,令,根據(jù)的單調(diào)性求出的最大值后即可得解.
(1)當(dāng)時(shí),.當(dāng)時(shí),,單調(diào)遞增,
當(dāng)時(shí),,單調(diào)遞減.所以是的極大值點(diǎn).
(2)由已知得,
的定義域?yàn)?/span>,.
當(dāng)時(shí),,當(dāng)時(shí),,單調(diào)遞增,
當(dāng)時(shí),,單調(diào)遞減.
當(dāng)時(shí),由,得或.
因而當(dāng)時(shí),,單調(diào)遞增,當(dāng)時(shí),,單調(diào)遞減.
當(dāng)時(shí),由,得或.
因而當(dāng)與時(shí),,單調(diào)遞增,當(dāng)時(shí),,單調(diào)遞減.
當(dāng)時(shí),,因而當(dāng)時(shí),單調(diào)遞增.
當(dāng)時(shí),由.得或,
因而當(dāng)與時(shí),,單調(diào)遞增,當(dāng)時(shí),,單調(diào)遞減.
綜上所述,當(dāng)時(shí),在上單調(diào)遞增,在上單調(diào)遞減;
當(dāng)時(shí),在與上單調(diào)遞增,在上單調(diào)遞減;
當(dāng)時(shí),在上單調(diào)遞增;
當(dāng)時(shí),在與上單調(diào)遞增,在上單調(diào)遞減.
(3),則的定義域?yàn)?/span>. .
若有兩個(gè)極值點(diǎn),則方程的判別式,且,,.
又,∴即.
,
設(shè)其中.
由得.
由于即,
∴在上單調(diào)遞增,在上單調(diào)遞減,
即的最大值為.
從而成立.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)為,左右兩頂點(diǎn),點(diǎn)為橢圓上任意一點(diǎn),滿(mǎn)足直線(xiàn)的斜率之積為,且的最大值為4.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)已知直線(xiàn)與軸的交點(diǎn)為,過(guò)點(diǎn)的直線(xiàn)與橢圓相交與兩點(diǎn),連接點(diǎn)并延長(zhǎng),交軌跡于一點(diǎn).求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義上的函數(shù),則下列選項(xiàng)不正確的是( )
A.函數(shù)的值域?yàn)?/span>
B.關(guān)于的方程有個(gè)不相等的實(shí)數(shù)根
C.當(dāng)時(shí),函數(shù)的圖象與軸圍成封閉圖形的面積為
D.存在,使得不等式能成立
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓,,分別是的上頂點(diǎn)和下頂點(diǎn).
(1)若,是上位于軸兩側(cè)的兩點(diǎn),求證:四邊形不可能是矩形;
(2)若是的左頂點(diǎn),是上一點(diǎn),線(xiàn)段交軸于點(diǎn),線(xiàn)段交軸于點(diǎn),,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)列的各項(xiàng)均為整數(shù),滿(mǎn)足:,且,其中.
(1)若,寫(xiě)出所有滿(mǎn)足條件的數(shù)列;
(2)求的值;
(3)證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)A(0,2),動(dòng)點(diǎn)M到點(diǎn)A的距離比動(dòng)點(diǎn)M到直線(xiàn)y=﹣1的距離大1,動(dòng)點(diǎn)M的軌跡為曲線(xiàn)C.
(1)求曲線(xiàn)C的方程;
(2)Q為直線(xiàn)y=﹣1上的動(dòng)點(diǎn),過(guò)Q做曲線(xiàn)C的切線(xiàn),切點(diǎn)分別為D、E,求△QDE的面積S的最小值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)各項(xiàng)均為正數(shù)的數(shù)列的前項(xiàng)和為,已知,且對(duì)一切都成立.
(1)當(dāng)時(shí).
①求數(shù)列的通項(xiàng)公式;
②若,求數(shù)列的前項(xiàng)的和;
(2)是否存在實(shí)數(shù),使數(shù)列是等差數(shù)列.如果存在,求出的值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為了了解高一新生是否愿意參加軍訓(xùn),隨機(jī)調(diào)查了80名新生,得到如下2×2列聯(lián)表
愿意 | 不愿意 | 合計(jì) | |
男 | x | 5 | M |
女 | y | z | 40 |
合計(jì) | N | 25 | 80 |
(1)寫(xiě)出表中x,y,z,M,N的值,并判斷是否有99.9%的把握認(rèn)為愿意參加軍訓(xùn)與性別有關(guān);
(2)在被調(diào)查的不愿意參加軍訓(xùn)的學(xué)生中,隨機(jī)抽出3人,記這3人中男生的人數(shù)為ξ,求ξ的分布列和數(shù)學(xué)期望.
參考公式:
附:
P(K2≥k0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.01 | 0.005 | 0.001 |
k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),g(x)=b(x﹣1),其中a≠0,b≠0
(1)若a=b,討論F(x)=f(x)﹣g(x)的單調(diào)區(qū)間;
(2)已知函數(shù)f(x)的曲線(xiàn)與函數(shù)g(x)的曲線(xiàn)有兩個(gè)交點(diǎn),設(shè)兩個(gè)交點(diǎn)的橫坐標(biāo)分別為x1,x2,證明:.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com