3.函數(shù)f(x)=1-ex的圖象與x軸相交于點P,則曲線在點P處的切線的方程為( 。
A.y=-e•x+1B.y=-x+1C.y=-xD.y=-e•x

分析 求出函數(shù)f(x)與x軸的交點坐標,再求出原函數(shù)的導函數(shù),得到函數(shù)在x=0處的導數(shù),由直線方程的點斜式得答案.

解答 解:由f(x)=1-ex,
可令f(x)=0,即ex=1,解得x=0
可得P(0,0),
又f′(x)=-ex
∴f′(0)=-e0=-1.
∴f(x)=1-ex在點P(0,0)處的切線方程為y-0=-1×(x-0),
即y=-x.
故選:C..

點評 本題考查利用導數(shù)研究曲線上某點的切線方程,過曲線上某點處的切線的斜率,就是函數(shù)在該點處的導數(shù)值,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

13.已知△ABC中,A:B:C=1:1:4,則a:b:c等于( 。
A.1:1:$\sqrt{3}$B.2:2:$\sqrt{3}$C.1:1:2D.1:1:4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知函數(shù)f(x)對任意的x,y∈R都有f(x+y)=f(x)+f(y),且f(2)=4,則f(1)=( 。
A.-2B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.在平面直角坐標系xoy中,點P到兩點$({0,\sqrt{3}}),({0,-\sqrt{3}})$的距離之和等于4,設點P的軌跡為C
(1)寫出曲線C的標準方程
(2)設直線y=kx+1與曲線C交于A,B兩點,求當k為何值時,能使∠AOB=90°?
(3)在(2)的條件下,求|AB|的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.如圖,F(xiàn)1,F(xiàn)2是橢圓${C_1}:\frac{x^2}{4}+{y^2}=1$與雙曲線C2的公共焦點,A,B分別是C1,C2在第二、四象限的公共點.若四邊形AF1BF2為矩形,則雙曲線C2的漸近線方程是( 。
A.$y=±\sqrt{2}x$B.$y=±\frac{{\sqrt{2}}}{2}x$C.y=±$\sqrt{3}$xD.y=±$\frac{{\sqrt{6}}}{2}$x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知實數(shù)集R,集合A={x|1<x<3},集合B={x|y=$\frac{1}{\sqrt{x-2}}$},則A∩(∁RB)=(  )
A.{x|1<x≤2}B.{x|1<x<3}C.{x|2≤x<3}D.{x|1<x<2}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.設函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}-(4a+1)x-8a+4,x<1}\\{lo{g}_{a}x,x≥1}\end{array}\right.$,若a=$\frac{1}{2}$,則函數(shù)f(x)的值域為R;若函數(shù)f(x)是R上的減函數(shù),求實數(shù)a的取值范圍為[$\frac{1}{4}$,$\frac{1}{3}$].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知集合A={1,2,3,4},B={x|x=2n,n∈A },則A∩B=( 。
A.{ 1,4}B.{ 2,4}C.{ 9,16}D.{2,3}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.設函數(shù)f(x)的導數(shù)為f'(x),且f(x)=ex+2x•f'(1),則f'(0)=1-2e.

查看答案和解析>>

同步練習冊答案