曲線 x2-y2=λ和曲線(x-1)2+y2=1有且僅有兩個(gè)不同的公共點(diǎn),則λ滿足
 
考點(diǎn):圓與圓錐曲線的綜合
專題:計(jì)算題,圓錐曲線的定義、性質(zhì)與方程
分析:曲線 x2-y2=λ和曲線(x-1)2+y2=1聯(lián)立可得2x2-2x-λ>0,利用△>0可解答案.
解答: 解:曲線 x2-y2=λ和曲線(x-1)2+y2=1聯(lián)立可得2x2-2x-λ>0,
∵曲線x2-y2=λ和曲線(x-1)2+y2=1有且僅有兩個(gè)不同的公共點(diǎn),
∴△=4+8λ>0且λ≠0,
∴λ>-
1
2
且λ≠0.
故答案為:λ>-
1
2
且λ≠0.
點(diǎn)評(píng):本題考查圓與圓錐曲線的綜合,考查學(xué)生的計(jì)算能力,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=ax5+bx3+cx+2,且f(2)=3,那么f(-2)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的首項(xiàng)為a1=1,且滿足對(duì)任意的n∈N*,都有an+1-an≤2n,an+2-an≥3×2n成立,則a2014=( 。
A、22014-1
B、22014+1
C、22015-1
D、22015+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
a
=(sinx,1,cox),
b
=(-1,sinx,cox)則
a
+
b
a
-
b
的夾角為(  )
A、
π
6
B、
π
4
C、
π
3
D、
π
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在長(zhǎng)方體ABCD-A1B1C1D1中,AD=AA1=1,AB=
3
,點(diǎn)E在棱AB上.
(1)求異面直線D1C與A1D所成的角的余弦值;
(2)當(dāng)二面角D1-EC-D的大小為45°時(shí),求點(diǎn)B到面D1EC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

用數(shù)學(xué)歸納法證明
1
22
+
1
32
+…+
1
(n+1)2
1
2
-
1
n+2
,假設(shè)n=k時(shí),不等式成立,則當(dāng)n=k+1時(shí),應(yīng)推證的目標(biāo)不等式是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若|
a
|=|
b
|=|
a
b
|,則
b
a
+
b
的夾角為(  )
A、30°B、60°
C、150°D、120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓
x
m
+y2=1和雙曲線
x2
n2
-y2=1共焦點(diǎn)F1,F(xiàn)2,P為兩曲線的一個(gè)公共點(diǎn),則∠F1PF2的大小為( 。
A、
π
3
B、
π
4
C、
2
3
π
D、
π
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

“m=-1”是“直線mx+(2m-1)y+1=0和直線3x+my+2=0垂直”的(  )
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案