已知雙曲線的標(biāo)準(zhǔn)方程為
x2
a2
-
y2
b2
=1
,離心率為
3
,且雙曲線過點(diǎn)(
2
2
),
(1)求雙曲線的標(biāo)準(zhǔn)方程;
(2)過點(diǎn)P(2,1)作一條直線l與雙曲線交于A,B兩點(diǎn)使P為AB的中點(diǎn),求直線l的方程.
考點(diǎn):雙曲線的簡單性質(zhì)
專題:計(jì)算題,直線與圓,圓錐曲線的定義、性質(zhì)與方程
分析:(1)運(yùn)用離心率公式及a,b,c的關(guān)系,代入雙曲線方程,得到2x2-y2=2a2,再代入點(diǎn)(
2
,
2
),解方程,即可得到a,b,進(jìn)而得到雙曲線方程;
(2)設(shè)出過P(1,2)點(diǎn)的直線AB方程,然后代入雙曲線方程,利用設(shè)而不求韋達(dá)定理求出k的值,求出AB的方程即可
解答: 解:(1)離心率為
3
,即e=
c
a
=
3
,
即c2=3a2,b2=c2-a2=2a2,
即有雙曲線方程為:2x2-y2=2a2,
代入點(diǎn)(
2
,
2
),則有4-2=2a2,
則a2=1,b2=2,
則雙曲線方程為:x2-
y2
2
=1;
(2)設(shè)過P(2,1)點(diǎn)的直線AB方程為y-1=k(x-2),
代入雙曲線方程得
(2-k2)x2-(2k-4k2)x-(k4-4k+3)=0.
設(shè)A(x1,y1),B(x2,y2),
則有x1+x2=
2k-4k2
2-k2

由已知
x1+x2
2
=xp=2,
k-2k2
2-k2
=2.解得k=4.
又k=4時(shí),△>0,從而直線AB方程為4x-y-7=0.
點(diǎn)評:本題考查雙曲線的方程和性質(zhì)及運(yùn)用,以及直線的一般式,通過直線與雙曲線的方程的聯(lián)立,通過設(shè)而不求韋達(dá)定理解題,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)y=f(x)的定義域?yàn)閇-1,5],則函數(shù)y=f(3-2x)的定義域是(  )
A、[-
5
2
,-1]
B、[-1,2]
C、[-1,5]
D、[
1
2
,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,設(shè)拋物線C1:y2=4mx(m>0)的準(zhǔn)線與x軸交于F1,焦點(diǎn)為F2;以F1、F2為焦點(diǎn),離心率e=
1
2
的橢圓C2與拋物線C1在x軸上方的一個(gè)交點(diǎn)為P.
(Ⅰ)當(dāng)m=1時(shí),求橢圓的方程及其右準(zhǔn)線的方程;
(Ⅱ)在(Ⅰ)的條件下,經(jīng)過點(diǎn)F2的直線l與拋物線C1交于A1、A2,如果以線段A1A2為直徑作圓,試判斷拋物線C1的準(zhǔn)線與橢圓C2的交點(diǎn)B1、B2與圓的位置關(guān)系;
(Ⅲ)是否存在實(shí)數(shù)m,使得△PF1F2的邊長是連續(xù)的自然數(shù),若存在,求出這樣的實(shí)數(shù)m;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

橢圓
x2
25
+
y2
9
=1
上的點(diǎn)M到左焦點(diǎn)F1的距離是2,N是MF1的中點(diǎn),O為坐標(biāo)原點(diǎn),則|ON|為( 。
A、4
B、2
C、8
D、
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
1
2
x2-(4+a)x+6ln(x+b),g(x)=5ln(x+b)+
1
2
x2-3x,函數(shù)f(x)在x=1與x=2處取得極值.
(1)求實(shí)數(shù)a、b的值;
(2)若φ(x)=f(x)-g(x),求證:當(dāng)x∈(-1,+∞)時(shí),φ(x)≤0恒成立;
(3)證明:若x>0,y>0,則xlnx+ylny≥(x+y)ln
x+y
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知某海濱浴場的海浪高度y米是時(shí)間t(0≤t≤24單位:小時(shí))的函數(shù),記y=f(t),下表是某日的浪高數(shù)據(jù):
t 小時(shí)03691215182124
y 米1.51.00.51.01.51.00.50.991.5
經(jīng)長期觀測y=f(t)的曲線可近似地看成是函數(shù)y=Acosωt+b,根據(jù)以上數(shù)據(jù),
(1)求出函數(shù)y=Acosωt+b的最小正周期、振幅A及函數(shù)表達(dá)式;
(2)依據(jù)規(guī)定,當(dāng)海浪高度高于1.25米時(shí),才對沖浪愛好者開放,請根據(jù)(Ⅰ)的結(jié)論,判斷一天內(nèi)的上午8點(diǎn)到晚上20點(diǎn)之間,哪些時(shí)間段可供沖浪者進(jìn)行運(yùn)動?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
4
x4-
1
2
ax3
+4x-3(a>0).
(Ⅰ)若f(x)在x=1處切線與直線x+2y-3=0垂直,求a的值;
(Ⅱ)若f(x)在[0,+∞)為增函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

點(diǎn)M(x,y)(x,y)與定點(diǎn)F1(-4,0)的距離,和點(diǎn)到直線l:x=-
25
4
的距離的比是常數(shù)
4
5
,則點(diǎn)M的軌跡方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)
a
=(sin2x-1,cos2x),
b
=(3,
3
)

①若
a
的單位向量,求x;
②設(shè)f(x)=
a
b
,求f(x)的單調(diào)遞減區(qū)間.

查看答案和解析>>

同步練習(xí)冊答案