【題目】如圖,已知某市穿城公路自西向東到達(dá)市中心后轉(zhuǎn)向東北方向,,現(xiàn)準(zhǔn)備修建一條直線型高架公路,在上設(shè)一出入口,在上設(shè)一出入口,且要求市中心所在的直線距離為.

1)求,兩出入口間距離的最小值;

2)在公路段上距離市中心點(diǎn)處有一古建筑(視為一點(diǎn)),現(xiàn)設(shè)立一個(gè)以為圓心,為半徑的圓形保護(hù)區(qū),問(wèn)如何在古建筑和市中心之間設(shè)計(jì)出入口,才能使高架公路及其延長(zhǎng)線不經(jīng)過(guò)保護(hù)區(qū)?

【答案】1;(2.

【解析】

1)過(guò)點(diǎn)O于點(diǎn)E,則OE=10,設(shè),則,,然后由,結(jié)合,利用三角函數(shù)的性質(zhì)求解.,

2)以O為原點(diǎn)建立平面直角坐標(biāo)系,得到圓C的方程為:,設(shè)直線AB的方程為:,根據(jù)題意由,且求解.

1)如圖所示:

過(guò)點(diǎn)O于點(diǎn)E,則OE=10,設(shè),

,

所以,

,

,

所以當(dāng)時(shí),.

2)以O為原點(diǎn)建立平面直角坐標(biāo)系,

則圓C的方程為:,

設(shè)直線AB的方程為:,

由題意得:,且,

所以,代入,

化簡(jiǎn)得:,

解得(舍去),

因?yàn)?/span>,所以,

所以

當(dāng)時(shí),,

所以.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的上頂點(diǎn)為,左,右焦點(diǎn)分別為,,的面積為,直線的斜率為.為坐標(biāo)原點(diǎn).

1)求橢圓的方程;

2)設(shè)過(guò)點(diǎn)的直線與橢圓交于點(diǎn)不在軸上),垂直于的直線與交于點(diǎn),與軸交于點(diǎn).,且,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】[選修4―4:坐標(biāo)系與參數(shù)方程]

在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為θ為參數(shù)),直線l的參數(shù)方程為.

(1)若a=1,求Cl的交點(diǎn)坐標(biāo);

(2)若C上的點(diǎn)到l的距離的最大值為,求a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列的前項(xiàng)和為,且

1)若為等差數(shù)列,且

①求該等差數(shù)列的公差;

②設(shè)數(shù)列滿足,則當(dāng)為何值時(shí),最大?請(qǐng)說(shuō)明理由;

2)若還同時(shí)滿足:

為等比數(shù)列;

;

③對(duì)任意的正整數(shù)存在自然數(shù),使得、依次成等差數(shù)列,試求數(shù)列的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解某校學(xué)生參加社區(qū)服務(wù)的情況,采用按性別分層抽樣的方法進(jìn)行調(diào)查.已知該校共有學(xué)生960人,其中男生560人,從全校學(xué)生中抽取了容量為n的樣本,得到一周參加社區(qū)服務(wù)時(shí)間的統(tǒng)計(jì)數(shù)據(jù)如下:

超過(guò)1小時(shí)

不超過(guò)1小時(shí)

20

8

12

m

1)求mn;

2)能否有95%的把握認(rèn)為該校學(xué)生一周參加社區(qū)服務(wù)時(shí)間是否超過(guò)1小時(shí)與性別有關(guān)?

3)從該校學(xué)生中隨機(jī)調(diào)查60名學(xué)生,一周參加社區(qū)服務(wù)時(shí)間超過(guò)1小時(shí)的人數(shù)記為X,以樣本中學(xué)生參加社區(qū)服務(wù)時(shí)間超過(guò)1小時(shí)的頻率作為該事件發(fā)生的概率,求X的分布列和數(shù)學(xué)期望.

附:

PK2k

0.050

0.010

0.001

k

3.841

6.635

10.828

K2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2019年春節(jié)期間,我國(guó)高速公路繼續(xù)執(zhí)行節(jié)假日高速公路免費(fèi)政策某路橋公司為掌握春節(jié)期間車輛出行的高峰情況,在某高速公路收費(fèi)點(diǎn)記錄了大年初三上午9:20~10:40這一時(shí)間段內(nèi)通過(guò)的車輛數(shù),統(tǒng)計(jì)發(fā)現(xiàn)這一時(shí)間段內(nèi)共有600輛車通過(guò)該收費(fèi)點(diǎn),它們通過(guò)該收費(fèi)點(diǎn)的時(shí)刻的頻率分布直方圖如下圖所示,其中時(shí)間段9:20~9:40記作區(qū)間,9:40~10:00記作10:00~10:20記作,10:20~10:40記作.例如:10點(diǎn)04分,記作時(shí)刻64.

1)估計(jì)這600輛車在9:20~10:40時(shí)間段內(nèi)通過(guò)該收費(fèi)點(diǎn)的時(shí)刻的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代表);

2)為了對(duì)數(shù)據(jù)進(jìn)行分析,現(xiàn)采用分層抽樣的方法從這600輛車中抽取10輛,再?gòu)倪@10輛車中隨機(jī)抽取4輛,設(shè)抽到的4輛車中,在9:20~10:00之間通過(guò)的車輛數(shù)為X,求X的分布列與數(shù)學(xué)期望;

3)由大數(shù)據(jù)分析可知,車輛在每天通過(guò)該收費(fèi)點(diǎn)的時(shí)刻T服從正態(tài)分布,其中可用這600輛車在9:20~10:40之間通過(guò)該收費(fèi)點(diǎn)的時(shí)刻的平均值近似代替,可用樣本的方差近似代替(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代表),已知大年初五全天共有1000輛車通過(guò)該收費(fèi)點(diǎn),估計(jì)在9:46~10:40之間通過(guò)的車輛數(shù)(結(jié)果保留到整數(shù)).

參考數(shù)據(jù):若,則,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的長(zhǎng)軸長(zhǎng)為,且離心率為.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)設(shè)橢圓的左焦點(diǎn)為,點(diǎn)是橢圓與軸負(fù)半軸的交點(diǎn),經(jīng)過(guò)的直線與橢圓交于點(diǎn),經(jīng)過(guò)且與平行的直線與橢圓交于點(diǎn),若,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著經(jīng)濟(jì)模式的改變,微商和電商已成為當(dāng)今城鄉(xiāng)一種新型的購(gòu)銷平臺(tái).已知經(jīng)銷某種商品的電商在任何一個(gè)銷售季度內(nèi),每售出噸該商品可獲利潤(rùn)萬(wàn)元,未售出的商品,每噸虧損萬(wàn)元.根據(jù)往年的銷售經(jīng)驗(yàn),得到一個(gè)銷售季度內(nèi)市場(chǎng)需求量的頻率分布直方圖如圖所示.已知電商為下一個(gè)銷售季度籌備了噸該商品.現(xiàn)以(單位:噸,)表示下一個(gè)銷售季度的市場(chǎng)需求量,(單位:萬(wàn)元)表示該電商下一個(gè)銷售季度內(nèi)經(jīng)銷該商品獲得的利潤(rùn).

1)將表示為的函數(shù),求出該函數(shù)表達(dá)式;

2)根據(jù)直方圖估計(jì)利潤(rùn)不少于57萬(wàn)元的概率;

3)根據(jù)頻率分布直方圖,估計(jì)一個(gè)銷售季度內(nèi)市場(chǎng)需求量的平均數(shù)與中位數(shù)的大。ūA舻叫(shù)點(diǎn)后一位).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙二人進(jìn)行一次象棋比賽,每局勝者得1分,負(fù)者得0分(無(wú)平局),約定一方得4分時(shí)就獲得本次比賽的勝利并且比賽結(jié)束,設(shè)在每局比賽中,甲獲勝的概率為,乙獲勝的概率為,各局比賽結(jié)果相互獨(dú)立,已知前3局中,甲得1分,乙得2.

1)求甲獲得這次比賽勝利的概率;

2)設(shè)表示從第4局開(kāi)始到比賽結(jié)束所進(jìn)行的局?jǐn)?shù),求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案