如圖,在正方體ABCD-A1B1C1D1中,AB=2,點E、F分別是AB、A1D1的中點.
(Ⅰ)求線段EF的長;
(Ⅱ)求異面直線EF與CB1所成角的余弦值.
考點:異面直線及其所成的角
專題:空間角
分析:分別以DA、DC、DD1為x,y,z軸,建立空間直角坐標系,利用向量法能求出異面直線EF與CB1所成角的余弦值.
解答: (Ⅰ)解:分別以DA、DC、DD1為x,y,z軸,
建立空間直角坐標系,
∵E(2,1,0),F(xiàn)(1,0,2),
EF
=(-1,-1,2),
∴線段EF的長|
EF
|=
6

(Ⅱ)由(Ⅰ)知
EF
=(-1,-1,2),
∵C(0,2,0),B1(2,2,2),
CB1
=(2,0,2),
設(shè)異面直線EF與CB1所成角為θ,
則cosθ=|cos<
EF
,
CB1
>|=|
-2+0+4
6
8
|=
3
6

∴異面直線EF與CB1叫所成角的余弦值為
3
6
點評:本題考查異面直線所成角的余弦值的求法,是基礎(chǔ)題,解題時要認真審題,注意向量法的合理運用.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x3+ax2+b的圖象上一點P(1,0),且在P點處的切線與直線3x+y=0平行.
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)在區(qū)間[0,t](0<t<3)上的最大值和最小值;
(3)在(1)的結(jié)論下,關(guān)于x的方程f(x)=c在區(qū)間[1,3]上恰有兩個相異的實根,求實數(shù)c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知曲線y=2x2+a在點P處的切線方程為8x-y-15=0,求切點P的坐標和實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,且asinB=
3
bcosA.
(1)求角A;
(2)若a=4,b+c=5,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某中學團委組織了“弘揚奧運精神,愛我中華”的知識競賽,從參加考試的學生中抽出60名學生,將其成績(均為整數(shù))分成六段[40,50),[50,60),…,[90,100]后畫出如圖所示部分頻率分布直方圖.觀察圖形給出的信息,回答下列問題:
(1)求第四小組的頻率;
(2)估計這次考試的及格率(60分及以上為及格)和平均分.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,一艘輪船在某海島附近的海上勻速直線航行,海島上一觀察哨A在上午11時測得輪船在海島北偏東60°的B處,12時20分測得輪船在海島北偏西60°的C處,12時40分輪船到達位于海島正西方且距離海島5海里的D港口.
(Ⅰ)求證:S△ABC=4S△ACD;
(Ⅱ)求輪船的速度(單位:海里/小時).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

正方形ABCD的邊長為1,AE=1,DE=
2
,CE=
3
.點P1,P2分別是線段AE、CE(不包括端點)上的動點,且線段P1P2∥平面ABCD.
(Ⅰ)證明:P1P2⊥BD;
(Ⅱ)求四面體P1P2AB體積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)函數(shù)f(x)=lnx+
1
2
ax2-ax.
(1)若函數(shù)f(x)在x=2處取得極值,求a的值,并求出此時函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)>0對x∈[1,2]恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知復數(shù)z=
5i
1-2i
(i為虛數(shù)單位),則|z|=
 

查看答案和解析>>

同步練習冊答案