表示不超過的最大整數(shù),例如:

依此規(guī)律,那么(    )
A.B.    C.D.
A

試題分析:解:因為


所以
故選A.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

古希臘畢達哥拉斯學(xué)派的數(shù)學(xué)家研究過各種多邊形數(shù).如三角形數(shù),第個三角形數(shù)為.記第邊形數(shù)為),以下列出了部分邊形數(shù)中第個數(shù)的表達式:
三角形數(shù)             正方形數(shù)  
五邊形數(shù)             六邊形數(shù)  
可以推測的表達式,由此計算            .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

凡自然數(shù)都是整數(shù),而 4是自然數(shù) 所以,4是整數(shù)。以上三段論推理(     )
A.正確B.推理形式不正確
C.兩個“自然數(shù)”概念不一致D.兩個“整數(shù)”概念不一致

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

觀察下列等式:

可以推測:13+23+33+…+n3=________(n∈N*,用含n的代數(shù)式表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

1955年,印度數(shù)學(xué)家卡普耶卡(D.R.Kaprekar)研究了對四位自然數(shù)的一種交換:任給出四位數(shù),用的四個數(shù)字由大到小重新排列成一個四位數(shù)m,再減去它的反序數(shù)n(即將的四個數(shù)字由小到大排列,規(guī)定反序后若左邊數(shù)字有0,則將0去掉運算,比如0001,計算時按1計算),得出數(shù),然后繼續(xù)對重復(fù)上述變換,得數(shù),…,如此進行下去,卡普耶卡發(fā)現(xiàn),無論是多大的四位數(shù),只要四個數(shù)字不全相同,最多進行k次上述變換,就會出現(xiàn)變換前后相同的四位數(shù)t(這個數(shù)稱為Kaprekar變換的核).通過研究10進制四位數(shù)2014可得Kaprekar變換的核為             .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

觀察下列等式

 
 
 
照此規(guī)律,第個等式為                             

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

將石子擺成如下圖的梯形形狀.稱數(shù)列為“梯形數(shù)”.根據(jù)圖形的構(gòu)成,判斷數(shù)列的第______________;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下列推理是歸納推理的是(  )
A.A,B為定點,動點P滿足|PA|+|PB|=2a>|AB|,則P點的軌跡為橢圓
B.由a1=1,an=3n-1,求出S1,S2,S3,猜想出數(shù)列的前n項和Sn的表達式
C.由圓x2+y2=r2的面積πr2,猜想出橢圓+=1的面積S=πab
D.以上均不正確

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)等差數(shù)列滿足公差,,且數(shù)列中任意兩項之和也是該數(shù)列的一項.若,則的所有可能取值之和為_________________.

查看答案和解析>>

同步練習(xí)冊答案