直線l:y=2x+3關(guān)于點(diǎn)P(2,3)對(duì)稱的直線l′的方程是( )
A.2x-y-5=0
B.2x+y-5=0
C.2x-y+5=0
D.2x+y+5=0
【答案】
分析:由于兩點(diǎn)確定一條直線故可將線關(guān)于點(diǎn)對(duì)稱的問題轉(zhuǎn)化為點(diǎn)關(guān)于點(diǎn)對(duì)稱的問題即求直線y=2x+3上兩點(diǎn)(0,3),(-1,1)關(guān)于點(diǎn)P(2,3)的對(duì)稱點(diǎn)再由點(diǎn)斜式寫出直線方程即為所求的直線l:y=2x+3關(guān)于點(diǎn)P(2,3)對(duì)稱的直線l'的方程.
解答:解:∵直線l:y=2x+3
∴A(0,3),B(-1,1)在此直線上
∵A(0,3)關(guān)于點(diǎn)P(2,3)的對(duì)稱點(diǎn)為C(4,3)
B(-1,1)關(guān)于點(diǎn)P(2,3)的對(duì)稱點(diǎn)為D(5,5)
∴C,D所在直線的斜率為k=
=2
∴直線l:y=2x+3關(guān)于點(diǎn)P(2,3)對(duì)稱的直線l'的方程為y-3=2(x-4)即2x-y-5=0
故選A.
點(diǎn)評(píng):本題主要考查了線關(guān)于點(diǎn)對(duì)稱的問題.解題的關(guān)鍵是將線關(guān)于點(diǎn)對(duì)稱的問題轉(zhuǎn)化為點(diǎn)關(guān)于點(diǎn)對(duì)稱的問題!