已知:在△ABC內(nèi)任取一點(diǎn)D,連接AD,BD,點(diǎn)E在△ABC外,∠EBC=∠ABD,∠ECB=∠DAB,求證:△DBE∽△ABC.
分析:由條件可得△ABD∽△CBE,可得到
BE
BC
=
BD
AB
,故在△DBE 和△ABC中,有兩邊對(duì)應(yīng)成比例且此兩邊的夾角相等,
從而得到這兩個(gè)三角形相似.
解答:證明:∵∠EBC=∠ABD,∠ECB=∠DAB 可得,△ABD∽△CBE.
BE
BD
=
BC
AB
,∴
BE
BC
=
BD
AB

故在△DBE 和△ABC中,∠ABC=∠DBE,且此角的兩邊對(duì)應(yīng)成比例.
∴△DBE∽△ABC.
點(diǎn)評(píng):本題主要考查余弦定理的應(yīng)用,證明兩個(gè)三角形全等,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列說法正確的有
 
.(把所有正確說法的序號(hào)都填在橫線上);
①拋擲兩枚硬幣,出現(xiàn)“兩枚都是正面朝上”、“兩枚都是反面朝上”、“恰好一枚硬幣正面朝上”的概率一樣大;
②已知樣本9,10,11,x,y的平均數(shù)是10,標(biāo)準(zhǔn)差是
2
,則xy=96;
③已知兩相關(guān)變量x,y之間的一組數(shù)據(jù)如下:(0,8),(1,2),(2,6),(3,4),則線性回歸方程
?
y
=bx+a
所表示的直線必恒經(jīng)過點(diǎn)(1.5,2);
④向面積為S的△ABC內(nèi)任投一點(diǎn)P,則隨機(jī)事件”△PBC的面積小于
S
3
”的概率為
5
9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知:在△ABC內(nèi)任取一點(diǎn)D,連接AD,BD,點(diǎn)E在△ABC外,∠EBC=∠ABD,∠ECB=∠DAB,求證:△DBE∽△ABC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知:在△ABC內(nèi)任取一點(diǎn)D,連接AD,BD,點(diǎn)E在△ABC外,∠EBC=∠ABD,∠ECB=∠DAB,求證:△DBE△ABC.
精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年河南師大附中分校高二(下)期中數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知:在△ABC內(nèi)任取一點(diǎn)D,連接AD,BD,點(diǎn)E在△ABC外,∠EBC=∠ABD,∠ECB=∠DAB,求證:△DBE∽△ABC.

查看答案和解析>>

同步練習(xí)冊(cè)答案