【題目】數(shù)列{an}的前n項和為Sn , 2Sn﹣nan=n(n∈N*),若S20=﹣360,則a2= .
【答案】-1
【解析】解:∵2Sn﹣nan=n(n∈N*),
∴Sn= ,
∴ ,解得a1=1,
∴ ,∴{an}是等差數(shù)列,
∵S20=﹣360,∴S20= =﹣360,
解得a20+1=﹣36,即a20=﹣37,
∴19d=a20﹣a1=﹣38,解得d=﹣2,
∴a2=a1+d=1﹣2=﹣1.
所以答案是:﹣1.
【考點精析】認真審題,首先需要了解數(shù)列的前n項和(數(shù)列{an}的前n項和sn與通項an的關(guān)系),還要掌握數(shù)列的通項公式(如果數(shù)列an的第n項與n之間的關(guān)系可以用一個公式表示,那么這個公式就叫這個數(shù)列的通項公式)的相關(guān)知識才是答題的關(guān)鍵.
科目:高中數(shù)學 來源: 題型:
【題目】某位同學在2015年5月進行社會實踐活動,為了對白天平均氣溫與某奶茶店的某種飲料銷量之間的關(guān)系進行分析研究,他分別記錄了5月1日至5月5日的白天平均氣溫x(°C)與該奶茶店的這種飲料銷量y(杯),得到如下數(shù)據(jù):
日 期 | 5月1日 | 5月2日 | 5月3日 | 5月4日 | 5月5日 |
平均氣溫x(°C) | 9 | 10 | 12 | 11 | 8 |
銷量y(杯) | 23 | 25 | 30 | 26 | 21 |
(1)若從這五組數(shù)據(jù)中隨機抽出2組,求抽出的2組數(shù)據(jù)不是相鄰2天數(shù)據(jù)的概率;
(2)請根據(jù)所給五組數(shù)據(jù),求出y關(guān)于x的線性回歸方程 = x+ .
(參考公式: = , = ﹣ )
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司生產(chǎn)一種電子儀器的固定成本為20000元,每生產(chǎn)一臺儀器需要增加投入100元,最大月產(chǎn)量是400臺.已知總收益滿足函數(shù) ,其中x是儀器的月產(chǎn)量(單位:臺).
(1)將利潤y(單位:元)表示為月產(chǎn)量x(單位:臺)的函數(shù);
(2)當月產(chǎn)量為何值時,公司所獲得利潤最大?最大利潤為多少?(總收益=總成本+利潤).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x2﹣2mx+10(m>1).
(1)若f(m)=1,求函數(shù)f(x)的解析式;
(2)若f(x)在區(qū)間(﹣∞,2]上是減函數(shù),且對于任意的x1 , x2∈[1,m+1],|f(x1)﹣f(x2)|≤9恒成立,求實數(shù)m的取值范圍;
(3)若f(x)在區(qū)間[3,5]上有零點,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C1: 的離心率為 ,且經(jīng)過點M 的直徑C1的長軸.如圖,C是橢圓短軸端點,動直線AB過點C且與圓C2交于A,B兩點,CD垂直于AB交橢圓于點D.
(1)求橢圓C1的方程;
(2)求△ABD面積的最大值,并求此時直線AB的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列各組函數(shù)是同一函數(shù)的是( )
① 與 ;
②f(x)=x與 ;
③f(x)=x0與 ;
④f(x)=x2﹣2x﹣1與g(t)=t2﹣2t﹣1.
A.①②
B.①③
C.③④
D.①④
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)g(x)=aln x,f(x)=x3+x2+bx.
(1)若f(x)在區(qū)間[1,2]上不是單調(diào)函數(shù),求實數(shù)b的范圍;
(2)若對任意x∈[1,e],都有g(shù)(x)≥﹣x2+(a+2)x恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=lg(ax2+ax+2)(a∈R).
(1)若a=﹣1,求f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)的定義域為R,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知f(x)=ax2+x﹣a.a(chǎn)∈R
(1)若不等式f(x)<b的解集為(﹣∞,﹣1)∪(3,+∞),求a,b的值;
(2)若a<0,解不等式f(x)>1.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com