分析 (Ⅰ)因?yàn)閺难b有10個(gè)球的箱子中任摸一球的結(jié)果共有$C_{10}^1$種,摸到紅球的結(jié)果共有$C_4^1$種,由此能求出顧客參加一次抽獎(jiǎng)獲得100元現(xiàn)金獎(jiǎng)勵(lì)的概率.
(Ⅱ)設(shè)X表示顧客在三次抽獎(jiǎng)中中獎(jiǎng)的次數(shù),由于顧客每次抽獎(jiǎng)的結(jié)果是相互獨(dú)立的,則X-B(3,0.4),由此能求出商場(chǎng)經(jīng)理希望顧客參加抽獎(jiǎng).
(Ⅲ)設(shè)顧客參加10次抽獎(jiǎng)摸中紅球的次數(shù)為Y.由于顧客每次抽獎(jiǎng)的結(jié)果是相互獨(dú)立的,則Y-B(10,0.4).恰好k次中獎(jiǎng)的概率為$P({Y=k})=C_{10}^k×{0.4^k}×{0.6^{10-k}}$,k=0,1,…,10.由此能求出顧客參加10次抽獎(jiǎng),最有可能獲得400元的現(xiàn)金獎(jiǎng)勵(lì).
解答 解:(Ⅰ)因?yàn)閺难b有10個(gè)球的箱子中任摸一球的結(jié)果共有$C_{10}^1$種,
摸到紅球的結(jié)果共有$C_4^1$種,
所以顧客參加一次抽獎(jiǎng)獲得100元現(xiàn)金獎(jiǎng)勵(lì)的概率是$\frac{C_4^1}{{C_{10}^1}}=\frac{4}{10}=\frac{2}{5}$.…(2分)
(Ⅱ)設(shè)X表示顧客在三次抽獎(jiǎng)中中獎(jiǎng)的次數(shù),
由于顧客每次抽獎(jiǎng)的結(jié)果是相互獨(dú)立的,則X-B(3,0.4),
所以E(X)=np=3×0.4=1.2.
由于顧客每中獎(jiǎng)一次可獲得100元現(xiàn)金獎(jiǎng)勵(lì),因此該顧客在三次抽獎(jiǎng)中可獲得的獎(jiǎng)勵(lì)金額的
均值為1.2×100=120元.
由于顧客參加三次抽獎(jiǎng)獲得現(xiàn)金獎(jiǎng)勵(lì)的均值120元小于直接返現(xiàn)的150元,
所以商場(chǎng)經(jīng)理希望顧客參加抽獎(jiǎng).…(7分)
(Ⅲ)設(shè)顧客參加10次抽獎(jiǎng)摸中紅球的次數(shù)為Y.
由于顧客每次抽獎(jiǎng)的結(jié)果是相互獨(dú)立的,則Y-B(10,0.4).
于是,恰好k次中獎(jiǎng)的概率為$P({Y=k})=C_{10}^k×{0.4^k}×{0.6^{10-k}}$,k=0,1,…,10.
從而$\frac{{P({Y=k})}}{{P({Y=k-1})}}=\frac{{2×({11-k})}}{3k}$,k=1,2,…,10,
當(dāng)k<4.4時(shí),P(Y=k-1)<P(Y=k);
當(dāng)k>4.4時(shí),P(Y=k-1)>P(Y=k),
則P(Y=4)最大.
所以,最有可能獲得的現(xiàn)金獎(jiǎng)勵(lì)為4×100=400元.
于是,顧客參加10次抽獎(jiǎng),最有可能獲得400元的現(xiàn)金獎(jiǎng)勵(lì).…(12分)
點(diǎn)評(píng) 本題主要考查隨機(jī)事件的概率、古典概型、二項(xiàng)公布、數(shù)學(xué)期望等基礎(chǔ)知識(shí),考查運(yùn)算求解能力、應(yīng)用意識(shí),考查運(yùn)用概率與統(tǒng)計(jì)的知識(shí)與方法分析和解決實(shí)際問(wèn)題的能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $-\frac{1}{2}$ | B. | 0 | C. | 2 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ¬p:?x∈R,x2+x+1>0 | B. | ¬p:?x∈R,x2+x+1≠0 | ||
C. | ¬p:?x∈R,x2+x+1≥0 | D. | ¬p:?x∈R,x2+x+1<0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com