如圖,四棱錐P-ABCD中,底面ABCD是直角梯形,∠DAB=90°,AD∥BC,AD⊥側(cè)面PAB,△PAB是等邊三角形,DA=AB=2,BC=AD,E是線段AB的中點(diǎn).
(Ⅰ)求證:PE⊥CD;
(Ⅱ)求四棱錐P-ABCD的體積;
(Ⅲ)求PC與平面PDE所成角的正弦值.
【答案】分析:(Ⅰ)先證明AD⊥PE,再證明PE⊥AB.AD∩AB=A,推出PE⊥平面ABCD.然后證明PE⊥CD.
(Ⅱ)說(shuō)明PE是四棱錐P-ABCD的高.求出PE=.然后求出
(Ⅲ)以E為原點(diǎn),建立如圖所示的空間直角坐標(biāo)系E-xyz.推出,.設(shè)=(x,y,z)為平面PDE的法向量.利用由即,可得=(1,-2,0).設(shè)PC與平面PDE所成的角為θ.利用.推出PC與平面PDE所成角的正弦值為
解答:(Ⅰ)證明:因?yàn)锳D⊥側(cè)面PAB,PE?平面PAB,
所以AD⊥PE.(2分)
又因?yàn)椤鱌AB是等邊三角形,E是線段AB的中點(diǎn),
所以PE⊥AB.
因?yàn)锳D∩AB=A,
所以PE⊥平面ABCD.(4分)
而CD?平面ABCD,
所以PE⊥CD.(5分)
(Ⅱ)解:由(Ⅰ)知:PE⊥平面ABCD,所以PE是四棱錐P-ABCD的高.
由DA=AB=2,BC=AD,可得BC=1.
因?yàn)椤鱌AB是等邊三角形,
可求得PE=
所以.(9分)
(Ⅲ)解:以E為原點(diǎn),建立如圖所示的空間直角坐標(biāo)系E-xyz.
則E(0,0,0),C(1,-1,0),D(2,1,0),P(0,0,).
,
設(shè)=(x,y,z)為平面PDE的法向量.
即,
令X=1,可得m=(1,-2,0).(12分)
設(shè)PC與平面PDE所成的角為θ.

所以PC與平面PDE所成角的正弦值為.(14分)
點(diǎn)評(píng):本題是中檔題,利用空間直角坐標(biāo)系通過(guò)向量的計(jì)算,考查直線與平面所成角正弦值的求法,直線與直線的垂直的證明方法,考查空間想象能力,計(jì)算能力,?碱}型.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,四棱錐P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,
E是PC的中點(diǎn).求證:
(Ⅰ)CD⊥AE;
(Ⅱ)PD⊥平面ABE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,四棱錐P-ABCD中,底面ABCD是直角梯形,AB∥CD,∠DAB=60°,AB=AD=2CD=2,側(cè)面PAD⊥底面ABCD,且△PAD為等腰直角三角形,∠APD=90°,M為AP的中點(diǎn).
(1)求證:AD⊥PB;
(2)求三棱錐P-MBD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,四棱錐P-ABCD的底面ABCD是矩形,AB=2,BC=
2
,且側(cè)面PAB是正三角形,平面PAB⊥平面ABCD.
(1)求證:PD⊥AC;
(2)在棱PA上是否存在一點(diǎn)E,使得二面角E-BD-A的大小為45°,若存在,試求
AE
AP
的值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥底面ABCD,且PA=AB=1,AD=
3
,點(diǎn)F是PB中點(diǎn).
(Ⅰ)若E為BC中點(diǎn),證明:EF∥平面PAC;
(Ⅱ)若E是BC邊上任一點(diǎn),證明:PE⊥AF;
(Ⅲ)若BE=
3
3
,求直線PA與平面PDE所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,四棱錐P-ABCD,PA⊥平面ABCD,ABCD是直角梯形,DA⊥AB,CB⊥AB,PA=2AD=BC=2,AB=2
2
,設(shè)PC與AD的夾角為θ.
(1)求點(diǎn)A到平面PBD的距離;
(2)求θ的大小;當(dāng)平面ABCD內(nèi)有一個(gè)動(dòng)點(diǎn)Q始終滿足PQ與AD的夾角為θ,求動(dòng)點(diǎn)Q的軌跡方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案