分析 推導(dǎo)出AD⊥BC,BC⊥AC,從而BC⊥面ACD,進(jìn)而BC⊥AF,又AF⊥CD,從而AF⊥面BCD,進(jìn)而AF⊥BD,再由AE⊥BD,得BD⊥面AEF,由此能求出BD與EF所成的角.
解答 解:AD⊥平面ABC,BC?平面ABC,∴AD⊥BC,
∵AB為圓O的直徑,C為圓O上的一點(diǎn),∴BC⊥AC,
∵AD∩AC=A,∴BC⊥面ACD,
∵AF?平面ACD,∴BC⊥AF,
∵AF⊥CD,BC∩CD=C,
∴AF⊥面BCD,∴AF⊥BD,
∵AE⊥BD,AF∩AE=A,
∴BD⊥面AEF,又EF?平面AEF,
∴BD⊥EF,∴BD與EF所成的角為90°.
故答案為:90°.
點(diǎn)評 本題考查異面直線所成角的大小的求法,是中檔題,解題時要認(rèn)真審題,注意線面垂直的性質(zhì)的合理運(yùn)用.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,-8] | B. | [-8,-4] | C. | (-∞,4]∪[8,+∞) | D. | (-∞,-8]∪[-4,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | M?N | B. | M?N | C. | M=N | D. | M?N |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com