已知函數(shù)f(x)對于任意的x,y∈R,總有f(x)+f(y)=f(x+y),且當x>0時,f(x)<0,f(-1)=2
(1)求f(0)的值并判斷函數(shù)單調(diào)性
(2)求函數(shù)f(x)在[-3,1]上的最大值與最小值.
考點:抽象函數(shù)及其應(yīng)用
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)利用賦值法即可求f(0)的值,根據(jù)函數(shù)單調(diào)性的定義即可判斷函數(shù)單調(diào)性
(2)根據(jù)函數(shù)的單調(diào)性和最值之間的關(guān)系即可得到結(jié)論.
解答: (1)令x=y=0得f(0)+f(0)=f(0),解得f(0)=0,
設(shè)x1>x2,f(x)+f(y)=f(x+y),令x=x2,x+y=x1,
則 y=x1-x2>0,所以 f(x2)+f(x1-x2)=f(x1
所以 f(x1)-f(x2)=f(x1-x2)<0,
所以,f(x)在R上是減函數(shù),
(2)f(x)+f(y)=f(x+y)
f(-3)=f(-2)+f(-1)=f(-1)+f(-1)+f(-1)=6,
f(1)+f(-1)=f(0)=0,f(1)=-2,
又因為f(x)在[-3,3]上是減函數(shù),
所以,最大值為f(-3)=6,最小值為f(-1)=-2.
點評:本題主要考查抽象函數(shù)的應(yīng)用,根據(jù)定義法和賦值法是解決抽象函數(shù)問題的基本方法.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

關(guān)于x的方程ax2-|x|+a=0有四個不同的解,則實數(shù)a的值可能是( 。
A、2
B、1
C、
1
2
D、
1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)求證:a logaN=N(a>0,且a≠1)
(2)用(1)的結(jié)論求下列式子的值.(其中③需詳細寫出解答過程)
①2 log264②3 2log39③2 log4(2-
3
)2
+3 log9(2+
3
)2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的一個焦點與拋物線y2=-4x的焦點相同,A(2,0)在橢圓上,過橢圓的右焦點F作斜率為k(k≠0)的直線l與橢圓交于E,G兩點,直線AE,AG分別交直線x=m(m>2)于點M,N,線段MN的中點為P,記直線PF的斜率為k′.
(1)求橢圓方程;
(2)求k•k′的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)與g(x)分別由下表給出:
x123
f(x)132
x123
g(x)321
則f(g(1))=
 
,若g(f(x))=1,則x=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若某多面體的三視圖(單位:cm),如圖所示,其中正視圖與俯視圖均為等腰三角形,則此多面體的表面積是( 。ヽm2
A、5
2
B、32+12
2
C、15
D、5+2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果橢圓
x2
4
+y2
=k上兩點間的距離最大值為8,則k的值為( 。
A、32B、16C、8D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

心理學(xué)家通過研究學(xué)生的學(xué)習行為發(fā)現(xiàn);學(xué)生的接受能力與老師引入概念和描述問題所用的時間相關(guān),教學(xué)開始時,學(xué)生的興趣激增,學(xué)生的興趣保持一段較理想的狀態(tài),隨后學(xué)生的注意力開始分散,分析結(jié)果和實驗表明,用f(x)表示學(xué)生掌握和接受概念的能力,x表示講授概念的時間(單位:min),可有以下的關(guān)系:f(x)=
-0.1x2+2.6x+43(0<x≤10)
59(10<x≤16)
-3x+107(16<x≤30)

(Ⅰ)開講后第5min與開講后第20min比較,學(xué)生的接受能力何時更強一些?
(Ⅱ)開講后多少min學(xué)生的接受能力最強?能維持多少時間?
(Ⅲ)若一個新數(shù)學(xué)概念需要55以上(包括55)的接受能力以及13min時間,那么老師能否在學(xué)生一直達到所需接受能力的狀態(tài)下講授完這個概念?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a>0,a≠1,f(x)=x2-ax.當x∈(-1,1)時,均有f(x)<
1
2
,則實數(shù)a的取值范圍是( 。
A、(0,
1
2
]∪[2,+∞)
B、[
1
2
,1)∪(1,2]
C、(0,
1
4
]∪[4,+∞)
D、[
1
4
,1)∪(1,4]

查看答案和解析>>

同步練習冊答案