(本小題滿分14分)
如圖,在四棱錐P-ABCD中,底面ABCD是菱形,∠BAD=,AB=2,PA=1,PA⊥平面ABCD,E是PC的中點(diǎn),F(xiàn)是AB的中點(diǎn).

(1)求證:BE∥平面PDF;
(2)求證:平面PDF⊥平面PAB;
(3)求三棱錐P-DEF的體積.
析:(1)取PD的中點(diǎn)為M,連結(jié)ME,MF,因?yàn)镋是PC的中點(diǎn),所以ME是△PCD的中位線.所以ME∥CD,ME=.又因?yàn)镕是AB的中點(diǎn),且由于ABCD是菱形,AB∥CD,AB=CD,所以ME∥FB,且ME=FB.所以四邊形MEBF是平行四邊形,所以BE∥MF.
連結(jié)BD,因?yàn)锽E平面PDF,MF平面PDF,所以BE∥平面PDF.
(2)因?yàn)镻A⊥平面ABCD,DF平面ABCD,所以DF⊥PA.
連結(jié)BD,因?yàn)榈酌鍭BCD是菱形,∠BAD=,所以△DAB為正三角形.
因?yàn)镕是AB的中點(diǎn),所以DF⊥AB.
因?yàn)镻A,AB是平面PAB內(nèi)的兩條相交直線,所以DF⊥平面PAB.
因?yàn)镈F平面PDF,所以平面PDF⊥平面PAB.
(3)因?yàn)镋是PC的中點(diǎn),所以點(diǎn)P到平面EFD的距離與點(diǎn)C到平面EFD的距離相等,故,又×2×,E到平面DFC的距離h=,所以××
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)如圖,在多面體ABCDE中,AE⊥面ABC,DB//AE,且AC=AB=BC=AE=1,BD=2,F(xiàn)為CD中點(diǎn)。
(1)求證:EF⊥平面BCD;
(2)求多面體ABCDE的體積;
(3)求平面ECD和平面ACB所成的銳二面角的余弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知頂點(diǎn)的坐標(biāo)為,,.
1)求點(diǎn)到直的距離的面積;
(2)求外接圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)(注意:在試題卷上作答無(wú)效)

在四棱錐中,側(cè)面底面,,底面是直角梯形,,,.
(Ⅰ)求證:平面;
(Ⅱ)設(shè)為側(cè)棱上一點(diǎn),
試確定的值,使得二面角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如右圖所示,已知四邊形ABCD為直角梯形,AD∥BC,∠ABC=90°,PA⊥平面AC,且PA=AD=AB=1,BC=2.

(1)求PC的長(zhǎng);
(2)求異面直線PC與BD所成角的余弦值的大小

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在正方體ABCD-A1B1C1D1中,O是底面ABCD的中心,M、N分別是棱DD1、D1C1的中點(diǎn),則直線OM
(  )
A.和AC、MN都垂直
B.垂直于AC,但不垂直于MN
C.垂直于MN,但不垂直于AC
D.與AC、MN都不垂直

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖所示,五面體ABCDE中,正ABC的邊長(zhǎng)為1,AE平面ABC,CD∥AE,且CD=AE.
(I)設(shè)CE與平面ABE所成的角為,AE=的取值范圍;
(Ⅱ)在(I)和條件下,當(dāng)取得最大值時(shí),求平面BDE與平面ABC所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知PA面ABC,ABBC,若PA=AC=2,AB=1
(1)求證:面PAB面PBC; (2)求二面角A-PC-B的正弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖1,在平面內(nèi),ABCD的菱形,都是正方形。將兩個(gè)正方形分別沿AD,CD折起,使重合于點(diǎn)D1。設(shè)直線l過(guò)點(diǎn)B且垂直于菱形ABCD所在的平面,點(diǎn)E是直線l上的一個(gè)動(dòng)點(diǎn),且與點(diǎn)D1位于平面ABCD同側(cè),設(shè)(圖2)。

(1)設(shè)二面角E – AC – D1的大小為q,若,求的取值范圍;
(2)在線段上是否存在點(diǎn),使平面平面,若存在,求出所成的比;若不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

同步練習(xí)冊(cè)答案