16.若復(fù)數(shù)z=$\frac{1-i}{i}$,則復(fù)數(shù)z的虛部為( 。
A.1B.-1C.-iD.i

分析 利用復(fù)數(shù)的運(yùn)算法則、虛部的定義即可得出.

解答 解:復(fù)數(shù)z=$\frac{1-i}{i}$=$\frac{-i(1-i)}{-i•i}$=-i-1,則復(fù)數(shù)z的虛部為-1.
故選:B.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)的運(yùn)算法則、虛部的定義,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.平面直角坐標(biāo)系xOy中,橢圓C:$\frac{{x}^{2}}{{a}^{2}}$$+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的長(zhǎng)軸長(zhǎng)為2,拋物線E:x2=2y的準(zhǔn)線與橢圓C相切.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若直線l與橢圓C相交于A,B兩點(diǎn)且與拋物線E在第一象限相切于點(diǎn)P,線段AB的中點(diǎn)為D,直線OD與過(guò)P且垂直于x軸的直線交于點(diǎn)M,求$\frac{{S}_{△PFG}}{|OG|}$的最小值及此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知數(shù)列{an}是公差為正數(shù)的等差數(shù)列,其前n項(xiàng)和為Sn,a1=1,且3a2,S3,a5成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)${b_n}=\frac{1}{{4{S_n}-1}}$,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知點(diǎn)P(1+cosα,sinα),參數(shù)為α,點(diǎn)Q在曲線C:ρ=$\frac{9}{\sqrt{2}sin(θ+\frac{π}{4})}$上.
(1)求點(diǎn)P的軌跡方程和曲線C的直角坐標(biāo)方程;
(2)求點(diǎn)P與點(diǎn)Q之間距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.過(guò)拋物線y2=4x的焦點(diǎn)F的直線交拋物線于A、B兩點(diǎn),點(diǎn)O是坐標(biāo)原點(diǎn),若|AF|=5,則弦AB的長(zhǎng)為( 。
A.10B.$\frac{25}{4}$C.$\frac{25}{2}$D.$\frac{13}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.如圖程序框圖的算法思路源于我國(guó)古代數(shù)學(xué)名著《九章算術(shù)》中的“更相減損術(shù)”.執(zhí)行該程序框圖,若輸入的a,b分別為63,98,則輸出的a=( 。
A.9B.3C.7D.14

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.直線x=t分別與函數(shù)$f(x)=sin(2x-\frac{π}{12})+3$、g(x)=$\sqrt{3}cos(2x-\frac{π}{12})-1$的圖象交于P、Q兩點(diǎn),當(dāng)實(shí)數(shù)t變化時(shí),|PQ|的最大值為( 。
A.6B.5C.4D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知函數(shù)f(x)=2$\sqrt{3}$sinxcosx-2sin2x,x∈R,則函數(shù)f(x)的單調(diào)遞增區(qū)間是[kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$](k∈Z).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.($\frac{64}{27}$)${\;}^{\frac{1}{3}}$+log3$\frac{10}{9}$+log3$\frac{9}{10}$=$\frac{4}{3}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案