已知f(x-1)=x2-2x+3,求f(x+1)的解析式.
考點:函數(shù)解析式的求解及常用方法
專題:函數(shù)的性質及應用
分析:先由f(x-1)=(x-1)2+2得出f(x),從而由f(x)即可求得f(x+1).
解答: 解:f(x-1)=(x-1)2+2;
∴f(x)=x2+2;
∴f(x+1)=x2+2x+3.
點評:考查通過變化f(g(x))的形式得出f(x)解析式,再由f(x)解析式求出f(h(x))解析式的方法.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知Sn是等差數(shù)列{an}的前n項和,數(shù)列{bn}是等比數(shù)列,b1=
1
2
,a5-1恰為S4
1
b2
的等比中項,圓C:(x-2n)2+(y-
Sn
2=2n2,直線l:x+y=n,對任意n∈N*,直線l都與圓C相切.
(Ⅰ)求數(shù)列{an},{bn}的通項公式;
(Ⅱ)若n=1時,c1=1+
1
1
b1
,n≥2時,cn=
1
1
bn-1
+1
+
1
1
bn-1
+2
+…+
1
1
bn
,{cn}的前n項和為Tn,求證:對任意≥2,都有Tn
n
2
+1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

比較大小sin(cosα)與cos(sinα)(其中0<α<
π
2
).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知實數(shù)a滿足有且僅有一個正方形,其四個頂點均在曲線y=x3+ax上,求該正方形的邊長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知變量x,y滿足約束條件
x+y-1≤0
x≥0
y≥-1
,則目標函數(shù)Z=x+2y的取值范圍是(  )
A、[-2,0]
B、[0,+∞]
C、[0,2]
D、[-2,2]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

被兩條直線
1
2
x-y=1
,y=-x-3截得的線段中點是P(0,3)的直線l的方程
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知實數(shù)x、y滿足條件
x-2y-4≤0
2x+y-8≤0
x≥m
,若
y
x
最大值為4,則
y
x
的最小值為(  )
A、-1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列結論不正確的是( 。
A、sin2>0
B、cos200°<0
C、tan(-2)<0
D、tan200°>0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點(2,
2
)在冪函數(shù)f(x)=xa(a為常數(shù))的圖象上,則f(9)=
 

查看答案和解析>>

同步練習冊答案