A是由定義在[2,4]上且滿(mǎn)足如下條件的函數(shù)φ(x)組成的集合:
(1)對(duì)任意x∈[1,2],都有φ(2x)∈(1,2);
(2)存在常數(shù)L(0<L<0),使得對(duì)任意的x1,x2∈[1,2],都有|?(2x1)-?(2x2)|≤L|x1-x2|.
(Ⅰ)設(shè)φ(x)=
31+x
,x∈[2,4],證明:φ(x)∈A;
(Ⅱ)設(shè)φ(x)∈A,如果存在x0∈(1,2),使得x0=φ(2x0),那么這樣的x0是唯一的;
(Ⅲ)設(shè)φ(x)∈A,任取xn∈(1,2),令xn+1=φ(2nx),n=1,2,…,證明:給定正整數(shù)k,對(duì)任意的正整數(shù)p,不等式|xk+p-xk|≤
Lk-1
1-L
|x2-x1|
成立.
(本小題滿(mǎn)分13分)
(Ⅰ)對(duì)任意x∈[1,2],φ(2x)∈(1,2);x∈[1,2],
33
φ(2x)≤
35
,1<
33
φ(2x)≤
35
<2,所以φ(2x)∈(1,2);.
對(duì)任意的x1,x2∈[1,2],|?(2x1)-?(2x2)|=|x1-x2|
2
3(1+2x1)2
+
2(1+x1)(1+x2)
+
3(1+x2)2

3<
3(1+x1)2
+
3(1+2x2)(1+x2)
+
3(1+x2)2

所以0<
2
3(1+2x1)2
+
2(1+x1)(1+x2)
+
3(1+x2)2
2
3
,
≤L|x1-x2|,
2
3(1+2x1)2
+
2(1+x1)(1+x2)
+
3(1+x2)2
=L
,0<L<1,
|?(2x1)-?(2x2)|≤L|x1-x2|,所以φ(x)∈A.…(5分)
(Ⅱ)反證法:設(shè)存在兩個(gè)x0,x0′∈(1,2),x0≠x0′使得x0′=φ(2x0′),
則由|φ(2x0)-φ(2x0′)|≤L|x0-x0′|,得)|x0-x0′|≤L|x0-x0′|,所以L≥1,矛盾,故結(jié)論成立.…(8分)
(Ⅲ)|x3-x2|=|?(2x2)-?(2x1)|≤L|x2-x1|,
所以|xn+1-xn|=|?(2xn)-?(2xn-1|≤L|xn-xn-1|≤L2|xn-1-xn-2|…
≤Ln-1|x2-x1||xk+p-xk|=|(xk+p-xk+p-1)+(xk+p-1-xk+p-2)+…+(xk+1-xk)|
≤|xk+p-xk+p-1|+|xk+p-1-xk+p-2|+…+|xk+1-xk|
≤Lk+p-2|x2-x1|+Lk+p-3|x2-x1|+…+Lk-1|x2-x1|
=
Lk-1(1-Lp)
1-L
|x2-x1|
Lk-1
1-L
|x2-x1|
.…(13分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•延慶縣一模)A是由定義在[2,4]上且滿(mǎn)足如下條件的函數(shù)φ(x)組成的集合:
(1)對(duì)任意x∈[1,2],都有φ(2x)∈(1,2);
(2)存在常數(shù)L(0<L<1),使得對(duì)任意的x1,x2∈[1,2],都有|φ(2x1)-φ(2x2)|≤L|x1-x2|.
(Ⅰ)設(shè)φ(x)=
31+x
,x∈[1,2],證明:φ(x)∈A;
(Ⅱ)設(shè)φ(x)∈A,如果存在x0∈(1,2),使得x0=φ(2x0),那么這樣的x0是唯一的.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•延慶縣一模)A是由定義在[2,4]上且滿(mǎn)足如下條件的函數(shù)φ(x)組成的集合:
(1)對(duì)任意x∈[1,2],都有φ(2x)∈(1,2);
(2)存在常數(shù)L(0<L<0),使得對(duì)任意的x1,x2∈[1,2],都有|?(2x1)-?(2x2)|≤L|x1-x2|.
(Ⅰ)設(shè)φ(x)=
31+x
,x∈[2,4],證明:φ(x)∈A;
(Ⅱ)設(shè)φ(x)∈A,如果存在x0∈(1,2),使得x0=φ(2x0),那么這樣的x0是唯一的;
(Ⅲ)設(shè)φ(x)∈A,任取xn∈(1,2),令xn+1=φ(2nx),n=1,2,…,證明:給定正整數(shù)k,對(duì)任意的正整數(shù)p,不等式|xk+p-xk|≤
Lk-1
1-L
|x2-x1|
成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:延慶縣一模 題型:解答題

A是由定義在[2,4]上且滿(mǎn)足如下條件的函數(shù)φ(x)組成的集合:
(1)對(duì)任意x∈[1,2],都有φ(2x)∈(1,2);
(2)存在常數(shù)L(0<L<1),使得對(duì)任意的x1,x2∈[1,2],都有|φ(2x1)-φ(2x2)|≤L|x1-x2|.
(Ⅰ)設(shè)φ(x)=
31+x
,x∈[1,2],證明:φ(x)∈A;
(Ⅱ)設(shè)φ(x)∈A,如果存在x0∈(1,2),使得x0=φ(2x0),那么這樣的x0是唯一的.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

20.

A是由定義在[2,4]上且滿(mǎn)足如下條件的函數(shù)(x)組成的集合:①對(duì)任意的都有(2x);②存在常數(shù)L(0<L<1),使得對(duì)任意的x1,x2[1,2],都有|(2x1)- (2 x2)|.

(Ⅰ)設(shè)(x)=證明:(x)A:

(Ⅱ)設(shè)(x),如果存在x0(1,2),使得x0=(2x0),那么這樣的x0是唯一的:

(Ⅲ)設(shè)任取x1(1,2),令xn+1=(2xn),n=1,2……證明:給定正整數(shù)k,對(duì)任意的正整數(shù)p,成立不等式Equation.3

查看答案和解析>>

同步練習(xí)冊(cè)答案