【題目】已知f(x)是定義在R上的偶函數(shù),且有f(3)>f(1).則下列各式中一定成立的是( )
A. f(-1)<f(3) B. f(0)<f(5)
C. f(3)>f(2) D. f(2)>f(0)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合P={x∈R|1≤x≤3},Q={x∈R|x2≥4},則P∪(CRQ)=( 。
A. [2,3] B. (﹣2,3] C. [1,2) D. (﹣∞,﹣2]∪[1,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x),g(x)在[a,b]上可導(dǎo),且f′(x)>g′(x),則當(dāng)a<x<b時,有( )
A.f(x)>g(x)
B.f(x)<g(x)
C.f(x)+g(a)>g(x)+f(a)
D.f(x)+g(b)>g(x)+f(b)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】由①正方形的對角線相等;②平行四邊形的對角線相等;③正方形是平行四邊形,根據(jù) “三段論”推理出一個結(jié)論,則這個結(jié)論是_______(填①、②、③)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在R上的函數(shù)f(x)是偶函數(shù),且f(x)=f(2-x),若f(x)在區(qū)間[1,2]上是減函數(shù),則f(x)( )
A. 在區(qū)間[-2,-1]上是增函數(shù),在區(qū)間[3,4]上是增函數(shù)
B. 在區(qū)間[-2,-1]上是增函數(shù),在區(qū)間[3,4]上是減函數(shù)
C. 在區(qū)間[-2,-1]上是減函數(shù),在區(qū)間[3,4]上是增函數(shù)
D. 在區(qū)間[-2,-1]上是減函數(shù),在區(qū)間[3,4]上是減函數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)-2是a與b的等差中項(xiàng),4是a2與-b2的等差中項(xiàng),則a-b=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=x3-6x2+9x-abc,a<b<c,且f(a)=f(b)=f(c)=0.現(xiàn)給出如下結(jié)論:
①f(0)f(1)>0;②f(0)f(1)<0;③f(0)f(3)>0;
④f(0)f(3)<0.
其中正確結(jié)論的序號是( )
A. ①③ B. ①④
C. ②③ D. ②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題p:“面積相等的三角形是全等三角形”,命題q:“全等三角形面積相等”,則q是p的( )
A. 逆命題 B. 否命題
C. 逆否命題 D. 否定
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若定義在R上的偶函數(shù)f(x)滿足f(x+2)=f(x),且當(dāng)x∈[0,1]時,f(x)=x,則函數(shù)y=f(x)-log3|x|的零點(diǎn)個數(shù)是
A. 2 B. 3 C. 4 D. 6
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com