13.已知球的半徑為R,若球面上兩點A,B的球面距離為$\frac{πR}{3}$,則這兩點A,B間的距離為R.

分析 兩點A、B間的球面距離為$\frac{πR}{3}$,可得∠AOB=$\frac{π}{3}$,即可求出兩點A,B間的距離.

解答 解:兩點A、B間的球面距離為$\frac{πR}{3}$,∴∠AOB=$\frac{π}{3}$.
∴兩點A,B間的距離為R,
故答案為:R.

點評 本題考查球面距離的概念,考查了空間想象能力、推理論證、計算能力.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

3.函數(shù)$f(x)=\frac{x}{x+1}({x>0})$的反函數(shù)為f-1(x)=$\frac{x}{1-x}$,(x∈(0,1)).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.學校為了提高學生的數(shù)學素養(yǎng),開設了《數(shù)學史選講》、《對稱與群》、《球面上的幾何》三門選修課程,供高二學生選修,已知高二年級共有學生600人,他們每個人都參加且只參加一門課程的選修,為了了解學生對選修課的學習情況,現(xiàn)用分層抽樣的方法從中抽取30名學生進行座談.據(jù)統(tǒng)計,參加《數(shù)學史選講》、《對稱與群》、《球面上的幾何》的人數(shù)依次組成一個公差為-40的等差數(shù)列,則應抽取參加《數(shù)學史選講》的學生的人數(shù)為12.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.若集合M={x|(x-1)(x-4)=0},N={x|(x+1)(x-3)<0},則M∩N=( 。
A.B.{1}C.{4}D.{1,4}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.如圖,ABCD是菱形,PA⊥平面ABCD,PA=AD=2,∠BAD=60°.
(Ⅰ)求證:平面PBD⊥平面PAC;
(Ⅱ)求二面角D-PB-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.已知△ABC的面積為360,點P是三角形所在平面內(nèi)一點,且$\overrightarrow{AP}=\frac{1}{4}\overrightarrow{AB}+\frac{1}{4}\overrightarrow{AC}$,則△PAB的面積為90.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.某租車公司給出的財務報表如下:
1014年(1-12月)1015年(1-12月)1016年(1-11月)
接單量(單)144632724012512550331996
油費(元)214301962591305364653214963
平均每單油費t(元)14.8214.49
平均每單里程k(公里)1515
每公里油耗a(元)0.70.70.7
有投資者在研究上述報表時,發(fā)現(xiàn)租車公司有空駛情況,并給出空駛率的計算公式為$T=\frac{t-ak}{ak}•100%$.
(1)分別計算2014,2015年該公司的空駛率的值(精確到0.01%);
(2)2016年該公司加強了流程管理,利用租車軟件,降低了空駛率并提高了平均每單里程,核算截止到11月30日,空駛率在2015年的基礎上降低了20個百分點,問2016年前11個月的平均每單油費和平均每單里程分別為多少?(分別精確到0.01元和0.01公里)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.已知直線y=ax與圓C:x2+y2-2ax-2y+2=0交于兩點A,B,且△CAB為等邊三角形,則圓C的面積為6π.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知函數(shù)f(x)=2x+$\frac{a}{x}$(a∈R).
(1)判斷函數(shù)f(x)的奇偶性;
(2)若函數(shù)f(x)在[2,+∞)上是增函數(shù),求a的取值范圍.

查看答案和解析>>

同步練習冊答案