分析 (1)求f(x)的導(dǎo)數(shù)f′(x),根據(jù)x>0求出f'(x)的值域,討論a的值得出f′(x)的正負(fù)情況,判斷f(x)的單調(diào)性和極值點(diǎn)問題;
(2)(i)f(x)≤g(x)等價(jià)于ex-lnx+x2≥ax,由x>0,利用分離常數(shù)法求出a的表達(dá)式,再構(gòu)造函數(shù)求最值即可;
(ii)由( i)結(jié)論,a=e+1時(shí)有f(x)≤g(x),得出不等式,再進(jìn)行等價(jià)轉(zhuǎn)化,證明轉(zhuǎn)化的命題成立即可.
解答 解:(1)由題意得f'(x)=x+$\frac{1}{x}$+a=$\frac{{x}^{2}+ax+1}{x}$,
當(dāng)a2-4≤0,即-2≤a≤2時(shí),f'(x)≥0恒成立,無(wú)極值點(diǎn);
當(dāng)a2-4>0,即a<-2或a>2時(shí),
①a<-2時(shí),設(shè)方程x2+ax+1=0兩個(gè)不同實(shí)根為x1,x2,不妨設(shè)x1<x1,x2,
則x1+x2=-a>0,x1x2=1>0,故0<x1<x2,
∴x1,x2是函數(shù)的兩個(gè)極值點(diǎn).
②a>2時(shí),設(shè)方程x2+ax+1=0兩個(gè)不同實(shí)根為x1,x2,
則x1+x2=-a<0,x1x2=1>0,故x1<0,x2<0,
故函數(shù)沒有極值點(diǎn).
綜上,當(dāng)a<-2時(shí),函數(shù)有兩個(gè)極值點(diǎn);
當(dāng)a≥-2時(shí),函數(shù)沒有極值點(diǎn).
(2)(i)f(x)≤g(x)等價(jià)于ex-lnx+x2≥ax,
由x>0,即a≤$\frac{{e}^{x}{+x}^{2}-lnx}{x}$對(duì)于?x>0恒成立,
設(shè)φ(x)=$\frac{{e}^{x}{+x}^{2}-lnx}{x}$(x>0),
φ′(x)=$\frac{{e}^{x}(x-1)+lnx+(x+1)(x-1)}{{x}^{2}}$,
∵x>0,∴x∈(0,1)時(shí),φ'(x)<0,φ(x)單調(diào)遞減,
x∈(1,+∞)時(shí),φ'(x)>0,φ(x)單調(diào)遞增,
∴φ(x)≥φ(1)=e+1,
∴a≤e+1.
(ii)( ii)由( i)知,當(dāng)a=e+1時(shí)有f(x)≤g(x),
即:ex+$\frac{3}{2}$x2≥lnx+$\frac{1}{2}$x2+(e+1)x,
等價(jià)于ex+x2-(e+1)x≥lnx…①當(dāng)且僅當(dāng)x=1時(shí)取等號(hào),
以下證明:lnx+$\frac{e}{x}$≥2,
設(shè)θ(x)=lnx+$\frac{e}{x}$,則θ′(x)=$\frac{1}{x}$-$\frac{e}{{x}^{2}}$=$\frac{x-e}{{x}^{2}}$,
∴當(dāng)x∈(0,e)時(shí)θ'(x)<0,θ(x)單調(diào)遞減,
x∈(e,+∞)時(shí)θ'(x)>0,θ(x)單調(diào)遞增,
∴θ(x)≥θ(e)=2,
∴l(xiāng)nx+$\frac{e}{x}$≥2,②當(dāng)且僅當(dāng)x=e時(shí)取等號(hào);
由于①②等號(hào)不同時(shí)成立,故有ex+x2-(e+1)x+$\frac{e}{x}$>2.
點(diǎn)評(píng) 本題考查了函數(shù)與導(dǎo)數(shù)的綜合應(yīng)用問題,也考查了求函數(shù)最值與不等式恒成立問題,是綜合性問題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {x|x<0} | B. | {x|-4<x<0} | C. | {x|-4<x<1} | D. | {x|x<1} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{5}$ | B. | -$\frac{7}{5}$ | C. | $-\frac{1}{5}$ | D. | $\frac{7}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{π}{6}+\frac{1}{3}$ | B. | $\frac{π}{12}+1$ | C. | $\frac{π}{12}+\frac{1}{3}$ | D. | $\frac{π}{4}+\frac{1}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 6+4$\sqrt{2}$ | B. | 4+4$\sqrt{2}$ | C. | 2 | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2n | B. | 2n | C. | n2 | D. | nn |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | x1<x2,y1<y2 | B. | x1<x2,y1>y2 | C. | x1>x2,y1>y2 | D. | x1>x2,y1<y2 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com