9.臨沂市某高二班主任對(duì)全班50名學(xué)生進(jìn)行了作業(yè)量多少的調(diào)查:喜歡玩游戲的27人中,認(rèn)為作業(yè)多的有18人,不喜歡玩游戲的同學(xué)中認(rèn)為作業(yè)多的有8人.
(1)根據(jù)以上數(shù)據(jù)建立一個(gè)2×2的列聯(lián)表;
(2)試通過計(jì)算說明在犯錯(cuò)誤的概率不超過多少的前提下認(rèn)為喜歡玩游戲與作業(yè)量的多少有關(guān)系?

分析 (1)由題意分別求得喜歡玩游戲認(rèn)為作業(yè)多、認(rèn)為作業(yè)不多的,不喜歡游戲認(rèn)為作業(yè)多的8人、作業(yè)不多的人數(shù),即可建立2×2的列聯(lián)表如下;
(2)根據(jù)表中所給的數(shù)據(jù),代入求觀測(cè)值的算式,求出觀測(cè)值,把所求的觀測(cè)值同臨界值進(jìn)行比較,得到喜歡玩游戲與作業(yè)量的多少有關(guān)系的把握.

解答 解:(1)由題意可知:喜歡玩游戲認(rèn)為作業(yè)多的有18人,認(rèn)為作業(yè)不多的由27-18=9人,
不喜歡游戲認(rèn)為作業(yè)多的8人,不喜歡玩游戲認(rèn)為作業(yè)不多的由50-18-9-8=15人,
故可建立2×2的列聯(lián)表如下:

認(rèn)為作業(yè)多認(rèn)為作業(yè)不多合計(jì)
喜歡玩游戲18927
不喜歡玩游戲81523
合計(jì)262450
…(5分)
 (2)將表中的數(shù)據(jù)代入公式K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,
得到K2的觀測(cè)值:K2=$\frac{50×(18×15-8×9)^{2}}{26×24×27×23}$≈5.059>5.024,…(10分)
查表知P(K2≥5.024)=0.025,
即說明在犯錯(cuò)誤的概率不超過0.025的前提下認(rèn)為喜歡玩游戲與作業(yè)量的多少有關(guān)系.   …12分

點(diǎn)評(píng) 本題主要考查獨(dú)立性檢驗(yàn)的應(yīng)用,正確理解臨界值對(duì)應(yīng)的概率的意義,考查計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知曲線C的極坐標(biāo)方程為ρsinθ+2ρcosθ=20,將曲線C1:$\left\{\begin{array}{l}{x=cosα}\\{y=sinα}\end{array}\right.$(α為參數(shù))經(jīng)過伸縮變換$\left\{\begin{array}{l}{x′=2x}\\{y′=3y}\end{array}\right.$后得到C2
(1)求曲線C2的參數(shù)方程;
(2)若點(diǎn)M在曲線C2上運(yùn)動(dòng),試求出M到曲線C的距離d的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.在極坐標(biāo)系中,曲線ρcos(θ-$\frac{π}{3}}$)=1與極軸的交點(diǎn)到極點(diǎn)的距離為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在如圖所示的多面體ABCDE中,AB⊥平面ACD,DE⊥平面ACD,AC=AD=CD=DE=2,AB=1,G為AD中點(diǎn).
(1)請(qǐng)?jiān)诰段CE上找到點(diǎn)F的位置,使得恰有直線BF∥平面ACD,并證明這一事實(shí);
(2)求平面BCE與平面ACD所成銳二面角的大小;
(3)求四面體E-BGC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.將點(diǎn)M的極坐標(biāo)(4,$\frac{π}{6}$)化成直角坐標(biāo)為( 。
A.(2,2$\sqrt{3}$)B.$(2\sqrt{3},2)$C.$(2\sqrt{2},2\sqrt{2})$D.(-2$\sqrt{3}$,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.如圖:PA為⊙O的切線,A為切點(diǎn),割線PBC過圓心O,PA=10,PB=5,則AC長(zhǎng)為$6\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.化簡(jiǎn):sin2A+sin2B+2sinAsinBcos(A+B).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知f(x)=$\left\{{\begin{array}{l}{{{({x-a})}^2},x≤0}\\{x+\frac{1}{x}+a,x>0}\end{array}}$在x=0處取得最小值,則a的最大值是( 。
A.4B.1C.3D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,⊙O的半徑OC垂直于直徑AB,M為BO上一點(diǎn),CM的延長(zhǎng)線交⊙O于N,過N點(diǎn)的切線交AB的延長(zhǎng)線于P.
(1)求證:PM2=PB•PA;
(2)若⊙O的半徑為2$\sqrt{3}$,OB=$\sqrt{3}$OM,求MN的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案