【題目】已知是底面邊長(zhǎng)為的正四棱柱,是和的交點(diǎn).
(1)若正四棱柱的高與底面邊長(zhǎng)相等,求二面角的大小(結(jié)果用反三角函數(shù)值表示);
(2)若點(diǎn)到平面的距離為,求正四棱柱的高.
【答案】(1);(2).
【解析】
(1)由題意,正四棱柱是棱長(zhǎng)為1的正方體,連結(jié),則是二面角的平面角,由此能求出二面角的大小.
(2)設(shè)正四棱柱的高為,以為原點(diǎn),為軸,為軸,為軸,建立空間直角坐標(biāo)系,利用向量法能求出正四棱柱的高.
(1)由題意,正四棱柱是棱長(zhǎng)為的正方體,
連結(jié),因?yàn)?/span>,為的中點(diǎn),所以,
又,所以是二面角的平面角.
因?yàn)?/span>平面,所以,
所以,.
所以,二面角的大小為;
(2)設(shè)正四棱柱的高為.
以為原點(diǎn),為軸,為軸,為軸,建立空間直角坐標(biāo)系,
則,,,,
,,.
設(shè)平面一個(gè)法向量為,
由得即
取,得,
所以,點(diǎn)以平面的距離為,
解得.
所以,正四棱柱的高為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(Ⅰ)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(Ⅱ)設(shè),若對(duì)任意的,存在使得成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)和是雙曲線上的兩點(diǎn),線段的中點(diǎn)為,直線不經(jīng)過坐標(biāo)原點(diǎn).
(1)若直線和直線的斜率都存在且分別為和,求證:;
(2)若雙曲線的焦點(diǎn)分別為、,點(diǎn)的坐標(biāo)為,直線的斜率為,求由四點(diǎn)、、、所圍成四邊形的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲乙兩隊(duì)參加聽歌猜歌名游戲,每隊(duì)人.隨機(jī)播放一首歌曲, 參賽者開始搶答,每人只有一次搶答機(jī)會(huì),答對(duì)者為本隊(duì)贏得一分,答錯(cuò)得零分, 假設(shè)甲隊(duì)中每人答對(duì)的概率均為,乙隊(duì)中人答對(duì)的概率分別為,且各人回答正確與否相互之間沒有影響.
(1)若比賽前隨機(jī)從兩隊(duì)的個(gè)選手中抽取兩名選手進(jìn)行示范,求抽到的兩名選手在同一個(gè)隊(duì)的概率;
(2)用表示甲隊(duì)的總得分,求隨機(jī)變量的分布列和數(shù)學(xué)期望;
(3)求兩隊(duì)得分之和大于4的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是定義在上的函數(shù),滿足.
(1)證明:2是函數(shù)的周期;
(2)當(dāng)時(shí),,求在時(shí)的解析式,并寫出在()時(shí)的解析式;
(3)對(duì)于(2)中的函數(shù),若關(guān)于x的方程恰好有20個(gè)解,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)、是關(guān)于的方程的兩個(gè)不相等的實(shí)數(shù)根,那么過兩點(diǎn)、的直線與圓的位置關(guān)系是( )
A.相離B.相切C.相交D.隨的變化而變化
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),則直線y=x+1與曲線的交點(diǎn)個(gè)數(shù)為_____;若關(guān)于x的方程有三個(gè)不等實(shí)根,則實(shí)數(shù)a的取值范圍是_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于函數(shù),下列說法正確的是( )
(1)是的極小值點(diǎn);
(2)函數(shù)有且只有1個(gè)零點(diǎn);
(3)恒成立;
(4)設(shè)函數(shù),若存在區(qū)間,使在上的值域是,則.
A.(1) (2)B.(2)(4)C.(1) (2) (4)D.(1)(2)(3)(4)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com