【題目】已知圓C:(x﹣3)2+(y﹣4)2=4及圓內一點P(2,5).
(1)求過P點的弦中,弦長最短的弦所在的直線方程;
(2)求過點M(5,0)與圓C相切的直線方程.
【答案】
解:(1)∵圓C:(x﹣3)2+(y﹣4)2=4及圓內一點P(2,5),
∴由題意,過P點且與CP垂直的弦長最短,
∵圓心C點坐標為(3,4),∴,
∴所求直線的斜率k=1,代入點斜式方程,
得y﹣5=x﹣2,即x﹣y+3=0.
∴P點的弦中,弦長最短的弦所在的直線方程為x﹣y+3=0.
(Ⅱ)當直線垂直x軸時,即x=5,圓心C到直線的距離為2,此時直線x=5與圓C相切,
當直線不垂直x軸時,設直線方程為y=k(x﹣5),即kx﹣y﹣5k=0,
圓心C到直線的距離d=
解得k=-,
∴所求切線方程為3x+4y﹣15=0,或x=5.
【解析】(1)過P點且與CP垂直的弦長最短,由此能求出點的弦中,弦長最短的弦所在的直線方程.
(Ⅱ)當直線垂直x軸時,直線x=5與圓C相切,當直線不垂直x軸時,設直線方程kx﹣y﹣5k=0,由圓心C到直線的距離等于半徑,能求出切線方程.
科目:高中數學 來源: 題型:
【題目】北京某附屬中學為了改善學生的住宿條件,決定在學校附近修建學生宿舍,學校總務辦公室用1000萬元從政府購得一塊廉價土地,該土地可以建造每層1000平方米的樓房,樓房的每平方米建筑費用與建筑高度有關,樓房每升高一層,整層樓每平方米建筑費用提高0.02萬元,已知建筑第5層樓房時,每平方米建筑費用為0.8萬元.
(1)若學生宿舍建筑為層樓時,該樓房綜合費用為萬元,綜合費用是建筑費用與購地費用之和),寫出的表達式;
(2)為了使該樓房每平方米的平均綜合費用最低,學校應把樓層建成幾層?此時平均綜合費用為每平方米多少萬元?
【答案】(1);(2)學校應把樓層建成層,此時平均綜合費用為每平方米萬元
【解析】
由已知求出第層樓房每平方米建筑費用為萬元,得到第層樓房建筑費用,由樓房每升高一層,整層樓建筑費用提高萬元,然后利用等差數列前項和求建筑層樓時的綜合費用;
設樓房每平方米的平均綜合費用為,則,然后利用基本不等式求最值.
解:由建筑第5層樓房時,每平方米建筑費用為萬元,
且樓房每升高一層,整層樓每平方米建筑費用提高萬元,
可得建筑第1層樓房每平方米建筑費用為:萬元.
建筑第1層樓房建筑費用為:萬元.
樓房每升高一層,整層樓建筑費用提高:萬元.
建筑第x層樓時,該樓房綜合費用為:.
;
設該樓房每平方米的平均綜合費用為,
則:,
當且僅當,即時,上式等號成立.
學校應把樓層建成10層,此時平均綜合費用為每平方米萬元.
【點睛】
本題考查簡單的數學建模思想方法,訓練了等差數列前n項和的求法,訓練了利用基本不等式求最值,是中檔題.
【題型】解答題
【結束】
20
【題目】已知.
(1)求函數的最小正周期和對稱軸方程;
(2)若,求的值域.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某服裝店為慶祝開業(yè)“三周年”,舉行為期六天的促銷活動,規(guī)定消費達到一定標準的顧客可進行一次抽獎活動,隨著抽獎活動的有效開展,第五天該服裝店經理對前五天中參加抽獎活動的人數進行統計,表示第天參加抽獎活動的人數,得到統計表格如下:
1 | 2 | 3 | 4 | 5 | |
4 | 6 | 10 | 23 | 22 |
(1)若與具有線性相關關系,請根據上表提供的數據,用最小二乘法求出關于的線性回歸方程;
(2)預測第六天的參加抽獎活動的人數(按四舍五入取到整數).
參考公式與參考數據:.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知四棱錐P - ABCD的底面為直角梯形,AB∥DC,∠DAB=90°,PA⊥底面ABCD,且PA=AD=DC
(1)證明平面PAD⊥平面PCD;
(2)求AC與PB所成角的余弦值;
(3)求平面AMC與平面BMC所成二面角的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】今年五一小長假,以洪崖洞、李子壩輕軌、長江索道、一棵樹觀景臺為代表的網紅景點,把重慶推上全國旅游人氣搒的新高.外地客人小胖準備游覽上面這個景點,他游覽每一個景臺的概率都是,且他是否游覽哪個景點互不影響.設表示小胖離開重慶時游覽的景點數與沒有游覽的景點數之差的絕對值.
(1)記“函數是實數集上的偶函數”為事件,求事件的概率.
(2)求的分布列及數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.
(1)證明:PC⊥AD;
(2)求二面角A﹣PC﹣D的正弦值;
(3)設E為棱PA上的點,滿足異面直線BE與CD所成的角為30°,求AE的長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4—4:坐標系與參數方程
平面直角坐標系xOy中,曲線C:.直線l經過點P(m,0),且傾斜角為.O為極點,以x軸正半軸為極軸,建立極坐標系.
(Ⅰ)寫出曲線C的極坐標方程與直線l的參數方程;
(Ⅱ)若直線l與曲線C相交于A,B兩點,且|PA|·|PB|=1,求實數m的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com