【題目】若f(x)=sin(2x+φ)+b,對(duì)任意實(shí)數(shù)x都有f(x+ )=f(﹣x),f( )=﹣1,則實(shí)數(shù)b的值為(
A.﹣2或0
B.0或1
C.±1
D.±2

【答案】A
【解析】解:由f(x+ )=f(﹣x),可得函數(shù)f(x)的圖象關(guān)于直線x= 對(duì)稱,∴2× +φ=kπ+ ,k∈z.

當(dāng)直線x= 經(jīng)過函數(shù)圖象的最高點(diǎn)時(shí),可得φ= ;當(dāng)直線x= 經(jīng)過函數(shù)圖象的最低點(diǎn)時(shí),可得φ=﹣

∴f(x)=sin(2x+ )+b,或f(x)=sin(2x﹣ )+b.

若 f(x)=sin(2x+ )+b,則由f( )=﹣1=sin +b=﹣1+b,∴b=0.

若 f(x)=sin(2x﹣ )+b,則由f( )=﹣1=sin +b=﹣1+b,∴b=﹣2.

綜上可得,b=0,或 b=﹣2,

故選:A.

【考點(diǎn)精析】關(guān)于本題考查的函數(shù)y=Asin(ωx+φ)的圖象變換,需要了解圖象上所有點(diǎn)向左(右)平移個(gè)單位長(zhǎng)度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)(縮短)到原來的倍(縱坐標(biāo)不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的縱坐標(biāo)伸長(zhǎng)(縮短)到原來的倍(橫坐標(biāo)不變),得到函數(shù)的圖象才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸正半軸為極軸,并在兩種坐標(biāo)系中取相同的長(zhǎng)度單位,已知直線l的參數(shù)方程為 ,(t為參數(shù),0<θ<π),曲線C的極坐標(biāo)方程為ρsin2θ﹣2cosθ=0.
(1)求曲線C的直角坐標(biāo)方程;
(2)設(shè)直線l與曲線C相交于A,B兩點(diǎn),當(dāng)θ變化時(shí),求|AB|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若(x+ n的展開式中各項(xiàng)的系數(shù)之和為81,且常數(shù)項(xiàng)為a,則直線y= x與曲線y=x2所圍成的封閉區(qū)域面積為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ex(其中e為自然對(duì)數(shù)的底數(shù)),g(x)= x+m(m,n∈R).
(1)若T(x)=f(x)g(x),m=1﹣ ,求T(x)在[0,1]上的最大值;
(2)若m=﹣ ,n∈N* , 求使f(x)的圖象恒在g(x)圖象上方的最大正整數(shù)n.[注意:7<e2 ].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知△ABC的兩個(gè)頂點(diǎn)A,B的坐標(biāo)分別為(﹣1,0),(1,0),且AC、BC所在直線的斜率之積等于﹣2,記頂點(diǎn)C的軌跡為曲線E.
(1)求曲線E的方程;
(2)設(shè)直線y=2x+m(m∈R且m≠0)與曲線E相交于P、Q兩點(diǎn),點(diǎn)M( ,1),求△MPQ面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】微信運(yùn)動(dòng)和運(yùn)動(dòng)手環(huán)的普及,增強(qiáng)了人民運(yùn)動(dòng)的積極性,每天一萬步稱為一種健康時(shí)尚,某中學(xué)在全校范圍內(nèi)內(nèi)積極倡導(dǎo)和督促師生開展“每天一萬步”活動(dòng),經(jīng)過幾個(gè)月的扎實(shí)落地工作后,學(xué)校想了解全校師生每天一萬步的情況,學(xué)校界定一人一天走路不足4千步為不健康生活方式,不少于16千步為超健康生活方式者,其他為一般生活方式者,學(xué)校委托數(shù)學(xué)組調(diào)查,數(shù)學(xué)組采用分層抽樣的辦法去估計(jì)全校師生的情況,結(jié)合實(shí)際及便于分層抽樣,認(rèn)定全校教師人數(shù)為200人,高一學(xué)生人數(shù)為700人,高二學(xué)生人數(shù)600人,高三學(xué)生人數(shù)500,從中抽取n人作為調(diào)查對(duì)象,得到了如圖所示的這n人的頻率分布直方圖,這n人中有20人被學(xué)校界定為不健康生活方式者.
(1)求這次作為抽樣調(diào)查對(duì)象的教師人數(shù);
(2)根據(jù)頻率分布直方圖估算全校師生每人一天走路步數(shù)的中位數(shù)(四舍五入精確到整數(shù)步);
(3)校辦公室欲從全校師生中速記抽取3人作為“每天一萬步”活動(dòng)的慰問對(duì)象,計(jì)劃學(xué)校界定不健康生活方式者鞭策性精神鼓勵(lì)0元,超健康生活方式者表彰獎(jiǎng)勵(lì)20元,一般生活方式者鼓勵(lì)性獎(jiǎng)勵(lì)10元,利用樣本估計(jì)總體,將頻率視為概率,求這次校辦公室慰問獎(jiǎng)勵(lì)金額X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知﹣ <x<0,則sinx+cosx=
(I)求sinx﹣cosx的值;
(Ⅱ)求 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù) 在區(qū)間[﹣k,k](k>0)上的值域?yàn)閇m,n],則m+n等于(
A.0
B.2
C.4
D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知min{{a,b}= f(x)=min{|x|,|x+t|},函數(shù)f(x)的圖象關(guān)于直線x=﹣ 對(duì)稱;若“x∈[1,+∞),ex>2mex”是真命題(這里e是自然對(duì)數(shù)的底數(shù)),則當(dāng)實(shí)數(shù)m>0時(shí),函數(shù)g(x)=f(x)﹣m零點(diǎn)的個(gè)數(shù)為

查看答案和解析>>

同步練習(xí)冊(cè)答案