【題目】如圖,四棱錐中,底面是直角梯形,,,,側(cè)面是等腰直角三角形,,平面平面,點(diǎn)分別是棱上的點(diǎn),平面平面.

(1)確定點(diǎn)的位置,并說明理由;

(2)求二面角的余弦值.

【答案】(1)見解析;(2)

【解析】分析:(1)因?yàn)槠矫?/span>平面,求得,又由,進(jìn)而得到

點(diǎn)的中點(diǎn),又因?yàn)槠矫?/span>平面,得,得點(diǎn)的中點(diǎn);

(2)以點(diǎn)為坐標(biāo)原點(diǎn),所在直線分別為軸,軸,軸建立空間直角坐標(biāo)系,求得平面,平面的法向量,利用向量的夾角公式,即可求解.

詳解:(1)因?yàn)槠矫?/span>平面,平面平面

平面平面,

所以,又因?yàn)?/span>,

所以四邊形是平行四邊形,

所以,即點(diǎn)的中點(diǎn),

因?yàn)槠矫?/span>平面,平面平面,

平面平面,

所以,點(diǎn)的中點(diǎn),所以點(diǎn)的中點(diǎn),

綜上,分別是的中點(diǎn).

(2)因?yàn)?/span>,所以

又因?yàn)槠矫?/span>平面,所以平面,

,所以.

如圖以點(diǎn)為坐標(biāo)原點(diǎn),所在直線分別為軸,軸,軸建立空間直角坐標(biāo)系,

,,,

由中點(diǎn)公式得到,

設(shè)平面,平面的法向量分別為,

,得:,

,得

,得:

,得

所以.

綜上,二面角的余弦值是.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)擬用10萬元投資甲、乙兩種商品.已知各投入萬元,甲、乙兩種商品分別可獲得萬元的利潤,利潤曲線,,如圖所示.

(1)求函數(shù)的解析式;

(2)應(yīng)怎樣分配投資資金,才能使投資獲得的利潤最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《算法統(tǒng)宗》是中國古代數(shù)學(xué)名著,由明代數(shù)學(xué)家程大位所著,該作完善了珠算口訣,確立了算盤用法,完成了由籌算到珠算的徹底轉(zhuǎn)變,該作中有題為“李白沽酒”“李白街上走,提壺去買酒。遇店加一倍,見花喝一斗,三遇店和花,喝光壺中酒。借問此壺中,原有多少酒?”,如圖為該問題的程序框圖,若輸出的值為0,則開始輸入的值為(

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如果一個(gè)三位數(shù)的各位數(shù)字互不相同,且各數(shù)字之和等于10,則稱此三位數(shù)為“十全十美三位數(shù)”(如235),任取一個(gè)“十全十美三位數(shù)”,該數(shù)為奇數(shù)的概率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著資本市場的強(qiáng)勢進(jìn)入,互聯(lián)網(wǎng)共享單車“忽如一夜春風(fēng)來”,遍布了一二線城市的大街小巷.為了解共享單車在市的使用情況,某調(diào)查機(jī)構(gòu)借助網(wǎng)絡(luò)進(jìn)行了問卷調(diào)查,并從參與調(diào)查的網(wǎng)友中隨機(jī)抽取了200人進(jìn)行抽樣分析,得到如表(單位:人):

經(jīng)常使用

偶爾或不用

合計(jì)

30歲及以下

70

30

100

30歲以上

60

40

100

合計(jì)

130

70

200

(Ⅰ)根據(jù)以上數(shù)據(jù),能否在犯錯(cuò)誤的概率不超過0.15的前提下認(rèn)為市使用共享單車情況與年齡有關(guān)?

(Ⅱ)①現(xiàn)從所抽取的30歲以上的網(wǎng)民中,按“經(jīng)常使用”與“偶爾或不用”這兩種類型進(jìn)行分層抽樣抽取10人,然后,再從這10人中隨機(jī)選出3人贈送優(yōu)惠券,求選出的3人中至少有2人經(jīng)常使用共享單車的概率.

②將頻率視為概率,從市所有參與調(diào)查的網(wǎng)民中隨機(jī)抽取10人贈送禮品,記其中經(jīng)常使用共享單車的人數(shù)為,求的數(shù)學(xué)期望和方差.

參考公式:,其中.

參考數(shù)據(jù):

0.15

0.10

0.05

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)

(1)若,且,求的最小值;

(2)若,且上恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程是,曲線的極坐標(biāo)方程為.

(1)求曲線的直角坐標(biāo)方程;

(2)設(shè)曲線交于點(diǎn),曲線軸交于點(diǎn),求線段的中點(diǎn)到點(diǎn)的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下面四個(gè)命題中,其中正確命題的序號為____________.

① 函數(shù)是周期為的偶函數(shù);

② 若 是第一象限的角,且,則 ;

是函數(shù)的一條對稱軸方程;

④ 在內(nèi)方程有3個(gè)解

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,圓的極坐標(biāo)方程為.

(1)求直線和圓的普通方程;

(2)已知直線上一點(diǎn),若直線與圓交于不同兩點(diǎn),求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案