已知平面α∩平面β=L,點(diǎn)A∈α,點(diǎn)B∈β,A∉L,B∉L.求證L與AB是異面直線(xiàn).
考點(diǎn):空間中直線(xiàn)與直線(xiàn)之間的位置關(guān)系
專(zhuān)題:空間位置關(guān)系與距離
分析:利用反證法證明.
解答: 解:假設(shè)L與AB不是異面直線(xiàn),
那么它們?cè)谕粋(gè)平面上,記這個(gè)平面為p.
∵A和L都在p上,∴由它們決定的平面α在平面p上,
∴平面p=平面a.同理p=平面β.
∴α=β,∵A∈α,∴A∈β,
所以A在α與β的交線(xiàn)L上,矛盾.
∴假設(shè)不成立,
∴L與AB是異面直線(xiàn).
點(diǎn)評(píng):本題考查兩條直線(xiàn)是異面直線(xiàn)的證明,是基礎(chǔ)題,解題時(shí)要注意反證法的靈活運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

請(qǐng)畫(huà)出函數(shù)y=丨x2-2丨的圖象,并求單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖:已知BC是半徑為1的半圓O的直徑,A是半圓周上不同于B,C的點(diǎn),F(xiàn)為弧AC的中點(diǎn).在梯形ACDE中,DE∥AC且AC=2DE,平面ACDE⊥平面ABC.求證:
(1)直線(xiàn)AB⊥平面ACDE;    
(2)直線(xiàn)BE∥平面DOF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

近年空氣質(zhì)量逐步惡化,霧霾天氣現(xiàn)象出現(xiàn)增多,大氣污染危害加重,大氣污染可引起心悸、呼吸困難等心肺疾。疄榱私饽呈行姆渭膊∈欠衽c性別有關(guān),在某醫(yī)院隨機(jī)對(duì)入院的50人進(jìn)行了問(wèn)卷調(diào)查得到了如下的列聯(lián)表:
患心肺疾病 不患心肺疾病 合計(jì)
5
10
合計(jì) 50
已知在全部50人中隨機(jī)抽取1人,抽到患心肺疾病的人的概率為
3
5

(1)請(qǐng)將上面的列聯(lián)表補(bǔ)充完整;
(2)是否有99.5%的把握認(rèn)為患心肺疾病與性別有關(guān)?說(shuō)明你的理由;
臨界值表供參考:
P(K2≥k) 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k 2.072 2.706 3.841 5.024 6.635 7.879 10.828
(參考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+c+b+d).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

生產(chǎn)方提供50箱的一批產(chǎn)品,其中有2箱不合格產(chǎn)品.采購(gòu)方接收該批產(chǎn)品的準(zhǔn)則是:從該批產(chǎn)品中任取5箱產(chǎn)品進(jìn)行檢測(cè),若至多有1箱不合格產(chǎn)品,便接收該批產(chǎn)品.問(wèn):該批產(chǎn)品被接收的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{bn}滿(mǎn)足bn=(-2n)•(
1
2
n-1,求該數(shù)列的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

頂點(diǎn)在坐標(biāo)原點(diǎn)的拋物線(xiàn)C以雙曲線(xiàn)
x2
12
-
y2
4
=1的左準(zhǔn)線(xiàn)l為準(zhǔn)線(xiàn),F(xiàn)為拋物線(xiàn)C的焦點(diǎn),過(guò)F的直線(xiàn)交拋物線(xiàn)于A,B兩點(diǎn),且|AF|>|BF|.
﹙1)求拋物線(xiàn)C的方程;
(2)若直線(xiàn)AB的傾斜角為
π
3
,求AF的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

袋中有5個(gè)黑球和3個(gè)白球,從中任取2個(gè)球,則其中至少有1個(gè)黑球的概率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)是定義在R上的偶函數(shù),對(duì)任意的x∈R,都有f(x+2)=f(x)-f(1),且當(dāng)x∈[2,3]時(shí),f(x)=2x2-12x-18,若在區(qū)間(0,+∞)上關(guān)于函數(shù)y=f(x)-loga(x+1)有3個(gè)不同的零點(diǎn),則a的取值范圍為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案