8.設(shè)f(x)是定義在R上的奇函數(shù),當(dāng)x>0時,f(x)=2x+1,則$f({{{log}_{\frac{1}{4}}}3})$=-2$\sqrt{3}$.

分析 判斷l(xiāng)og${\;}_{\frac{1}{4}}$3的符號,利用奇函數(shù)的性質(zhì)和對數(shù)的運算性質(zhì)計算.

解答 解:∵log${\;}_{\frac{1}{4}}$3<0,
f(log${\;}_{\frac{1}{4}}$3)=-f(log43)=-f(log2$\sqrt{3}$)=-2${\;}^{lo{g}_{2}\sqrt{3}}$+1=-2$\sqrt{3}$.
故答案為:$-2\sqrt{3}$.

點評 本題考查了奇函數(shù)的性質(zhì),對數(shù)的運算性質(zhì),屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知數(shù)列{an}的通項${a_n}={2^n}cos({nπ})$,則a1+a2+…+a100=( 。
A.0B.$\frac{{2-{2^{101}}}}{3}$C.2-2101D.$\frac{2}{3}({{2^{100}}-1})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.不等式|x-4|≤3的整數(shù)解的個數(shù)是( 。
A.4B.5C.6D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=$\sqrt{3}$sinxcosx-cos2x-m.
(Ⅰ)求函數(shù)f(x)的最小正周期與單調(diào)遞增區(qū)間;
(Ⅱ)若x∈[-$\frac{π}{12}$,$\frac{π}{2}$]時,方程f(x)=0有實數(shù)解,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.在等比數(shù)列{an}中,已知a3=2,a3+a5+a7=26,則a7=( 。
A.12B.18C.24D.36

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=x2-2axlnx-2a+1(a∈R).
(1)若a=2,求曲線y=f(x)在點(1,f(1))處的切線方程;
(2)若f(x)≥0對任意 在x∈[1,+∞)恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知冪函數(shù)f(x)=xa的圖象過點(4,2),令${a_n}=\frac{1}{f(n+1)+f(n)}$(n∈N*),記數(shù)列{an}的前n項和為Sn,則S2018=( 。
A.$\sqrt{2018}+1$B.$\sqrt{2018}-1$C.$\sqrt{2019}+1$D.$\sqrt{2019}-1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知正項等比數(shù)列{an}滿足a2017=2a2016+3a2015,若存在不同的兩項ap,am使得$\sqrt{{a_p}•{a_m}}=3\sqrt{3}•{a_1}$,則$\frac{1}{m}+\frac{4}{p}$的最小值是$\frac{11}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=$\frac{a{x}^{2}+bx}{{e}^{x}}$,(e為自然對數(shù)的底數(shù),a,b∈R),若f(x)在x=0處取得極值,且x-ey=0是曲線y=f(x)的切線.
(1)求a,b的值;
(2)若?x0∈[1,e]使得不等式f(x0)-k<0能成立,求實數(shù)k的取值范圍;
(3)用min{m,n}表示m,n中的最小值,設(shè)函數(shù)g(x)=min{f(x),x-$\frac{1}{x}$}(x>0),若函數(shù)h(x)=g(x)-cx2為增函數(shù),求實數(shù)c的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案