已知變量x,y滿足約束條件
x+y≤1
x-y≤1
x≥a
,若x+2y≥-5恒成立,則實(shí)數(shù)a的取值范圍為( 。
A、(-∞,-1]
B、[-1,+∞)
C、[-1,1]
D、[-1,1)
考點(diǎn):簡單線性規(guī)劃
專題:不等式的解法及應(yīng)用
分析:設(shè)z=x+2y,作出不等式組對(duì)應(yīng)的平面區(qū)域,要使x+2y≥-5恒成立,即z≥-5.利用數(shù)形結(jié)合即可得到結(jié)論
解答: 解:設(shè)z=x+2y,要使x+2y≥-5恒成立,即z≥-5.
作出不等式組對(duì)應(yīng)的平面區(qū)域如圖:
要使不等式組成立,則a≤1,
由z=x+2y,得y=-
1
2
x
+
z
2
,
平移直線y=-
1
2
x
+
z
2
由圖象可知當(dāng)直線經(jīng)過點(diǎn)A時(shí),
直線y=-
1
2
x
+
z
2
的截距最小,此時(shí)z最小,
即x+2y=-5,
x+2y=-5
x-y=1
,
解得
x=-1
y=-2
,即A(-1,-2),
∴此時(shí)a=-1,
∴要使x+2y≥-5恒成立,
則-1≤a≤1,
故選:C.
點(diǎn)評(píng):本題主要考查線性規(guī)劃的應(yīng)用,利用不等式恒成立,利用數(shù)形結(jié)合是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
2
3x
+m
是奇函數(shù),則實(shí)數(shù)m=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線標(biāo)準(zhǔn)方程為
y2
2
-x2=1,則雙曲線離心率為( 。
A、
2
B、3
C、
6
2
D、
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某商品銷售量y(件)與銷售價(jià)格x(元/件)負(fù)相關(guān),則其回歸方程可能是( 。
A、
y
=10x+170
B、
y
=18x-170
C、
y
=-18x+170
D、
y
=-10x-170

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)具有線性相關(guān)關(guān)系的變量x,y,測(cè)得一組數(shù)據(jù)如下表:
x 2 4 5 6 8
y 20 40 60 70 80
參考公式:b=
R
i=1
x2y2-n
.
x
.
y
n
i=1
x
2
i
-n
.
x2
根據(jù)上表,利用最小二乘法得它們的回歸直線方程為 
y
=bx+1.5,據(jù)此模型來預(yù)測(cè)當(dāng)x=20時(shí),y的估計(jì)值為( 。
A、210.5B、212.5
C、210D、211.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用至少2種方法求函數(shù)y=
sinx
cosx-2
的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某高校在2013年的自主招生考試成績中隨機(jī)抽取100名學(xué)生的筆試成績,按成績分組得到的頻率分布表如下:
組號(hào) 分組 頻數(shù) 頻率
第一組 [160,165) 5 0.050
第二組 [165,170) a 0.350
第三組 [170,175) 30 b
第四組 [175,180) c 0.200
第五組 [180,185] 10 0.100
合計(jì) 100 1.00
(1)為了能選拔出優(yōu)秀的學(xué)生,高校決定在筆試成績高的第三、四、五組中用分層抽樣法抽取6名學(xué)生進(jìn)入第二輪面試,試確定a,b,c的值并求第三、四、五組每組各抽取多少名學(xué)生進(jìn)入第二輪面試;
(2)在(1)的前提下,學(xué)校決定在6名學(xué)生中隨機(jī)抽取2名學(xué)生接受A考官的面試,求第四組中至少有一名學(xué)生被A考官面試的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中an+1=2an+2n+1(n∈N*),a1=2,
(1)求證:數(shù)列{
an
2n
}是等差數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{an}前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)
a
,
b
是兩個(gè)非零向量,則使
a
b
=|
a
||
b
|成立的一個(gè)必要非充分條件是(  )
A、
a
=
b
B、
a
b
C、
a
b
(λ>0)
D、
a
b

查看答案和解析>>

同步練習(xí)冊(cè)答案