在如圖所示的幾何體ABCED中,EC⊥面ABC,DB⊥面ABC,CE=CA=CB=2DB,∠ACB=90°,M為
AD的中點.(1)證明:EM⊥AB;(2)求直線BM和平面ADE所成角的正弦值.
(1)證明:以C為原點建立如圖所示的空間直角坐標系,設DB=1,則 CE=CA=CB=2.
由于A(2,0,0),B(0,2,0),E(0,0,2),D(0,2,1),M(1,1,
1
2
),∴
EM
=(1,1-
3
2
),
AB
=(-2,2,0),∴
EM
AB
=-2+2+0=0,∴
EM
AB
,∴EM⊥AB.
(2)由(1)知
BM
=(1,-1,
1
2
),
AD
=(-2,2,1),
AE
=(-2,0,2),
DE
=(0,-2,1).
設面ADE的法向量為
n
=(x,y,z),則
n
AE
=0
n•
DE
=0
,即
-2x+2z=0
-2y+z=0
,
n
=(2,1,2)設直線BM和平面ADE所成角為θ,則 sinθ=|cos<
BM
,
n
>=|
BM
n
|
BM
|•|
n
|
|=
4
9
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知SA、SB、SC是共點于S的且不共面的三條射線,∠BSA=∠ASC=45°,∠BSC=60°,求證:平面BSA⊥平面SAC

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

考察正方體6個面的中心,甲從這6個點中任意選兩個點連成直線,乙也從這6個點中任意選兩個點連成直線,則所得的兩條直線相互平行但不重合的概率等于(     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在棱長為1的正方體ABCD-A1B1C1D1中,E,F(xiàn),G分別為A1B1、B1C1、C1D1的中點.
(1)求異面直線AG與BF所成角的余弦值;
(2)求證:AG平面BEF;
(3)試在棱BB1上找一點M,使DM⊥平面BEF,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,PA⊥平面ABCD,四邊形ABCD是正方形,PA=AD=2,M,N分別是AB,PC的中點.
(1)求二面角P-CD-B的大;
(2)求證:平面MND⊥平面PCD;
(3)求點P到平面MND的距離.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在長方體ABCD-A1B1C1D1中,AB=2,AA1=
3
,AD=2
2
,P為C1D1的中點,M為BC的中點.
(Ⅰ)證明:AM⊥PM;
(Ⅱ)求AD與平面AMP所成角的正弦值;
(Ⅲ)求二面角P-AM-D的大。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,四棱錐P-ABCD中,PD⊥底面ABCD,PD=DC=2AD,AD⊥DC,∠BCD=45°.
(1)設PD的中點為M,求證:AM平面PBC;
(2)求PA與平面PBC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在如圖所示的幾何體中,四邊形ABCD是菱形,ADNM是矩形,平面ADNM⊥平面ABCD,∠DAB=60°,AD=2,AM=1,E為AB的中點.
(Ⅰ)求證:AN平面MEC;
(Ⅱ)在線段AM上是否存在點P,使二面角P-EC-D的大小為
π
6
?若存在,求出AP的長h;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

空間兩條直線具有下列條件之一,則兩直線一定平行的是(  )
A.同垂直于一條直線
B.同垂直于一個平面
C.同平行于一個平面
D.同在一個平面內(nèi)

查看答案和解析>>

同步練習冊答案