已知函數(shù)
(1)從區(qū)間內(nèi)任取一個(gè)實(shí)數(shù),設(shè)事件={函數(shù)在區(qū)間上有兩個(gè)不同的零點(diǎn)},求事件發(fā)生的概率;
(2)若連續(xù)擲兩次骰子(骰子六個(gè)面上標(biāo)注的點(diǎn)數(shù)分別為)得到的點(diǎn)數(shù)分別為,記事件{恒成立},求事件發(fā)生的概率.

(1);(2)

解析試題分析:(1)根據(jù)函數(shù)在區(qū)間上有兩個(gè)不同的零點(diǎn),
得知有兩個(gè)不同的正根,
由不等式組 ,利用幾何概型得解.
(2)應(yīng)用基本不等式得到
由于恒成立,得到
討論當(dāng),,的情況,
得到滿足條件的基本事件個(gè)數(shù),而基本事件總數(shù)為, 故應(yīng)用古典概型概率的計(jì)算公式即得解.
試題解析:(1)函數(shù)在區(qū)間上有兩個(gè)不同的零點(diǎn),
,即有兩個(gè)不同的正根
                                            4分
                                                         6分
(2)由已知:,所以,即
,
恒成立                             8分
當(dāng)時(shí),適合;   
當(dāng)時(shí),均適合;   
當(dāng)時(shí),均適合;
滿足的基本事件個(gè)數(shù)為.                                    10分
而基本事件總數(shù)為,                                              11分
.                                                       12分
考點(diǎn):古典概型,幾何概型,一元二次方程根的分別,基本不等式的應(yīng)用,不等式恒成立問題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(13分)(2011•重慶)某市公租房的房源位于A、B、C三個(gè)片區(qū),設(shè)每位申請(qǐng)人只申請(qǐng)其中一個(gè)片區(qū)的房源,且申請(qǐng)其中任一個(gè)片區(qū)的房源是等可能的,求該市的4位申請(qǐng)人中:
(I)沒有人申請(qǐng)A片區(qū)房源的概率;
(II)每個(gè)片區(qū)的房源都有人申請(qǐng)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某中學(xué)在高一開設(shè)了數(shù)學(xué)史等4門不同的選修課,每個(gè)學(xué)生必須選修,且只能從中選一門。該校高一的3名學(xué)生甲、乙、丙對(duì)這4門不同的選修課的興趣相同。
(1)求恰有2門選修課這3個(gè)學(xué)生都沒有選擇的概率;
(2)設(shè)隨機(jī)變量為甲、乙、丙這三個(gè)學(xué)生選修數(shù)學(xué)史這門課的人數(shù),求的分布列及期望,方差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知甲盒內(nèi)有大小相同的1個(gè)紅球和3個(gè)黑球,乙盒內(nèi)有大小相同的2個(gè)紅球和個(gè)黑球(為正整數(shù)).現(xiàn)從甲、乙兩個(gè)盒內(nèi)各任取2個(gè)球,若取出的4個(gè)球均為黑球的概率為,求
(1)的值;
(2)取出的4個(gè)球中黑球個(gè)數(shù)大于紅球個(gè)數(shù)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

甲、乙兩人各擲一次骰子(均勻的正方體,六個(gè)面上分別為1,2,3,4,5,6點(diǎn)),所得點(diǎn)數(shù)分別為x,y
(1)求x<y的概率;
(2)求5<x+y<10的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

對(duì)有個(gè)元素的總體進(jìn)行抽樣,先將總體分成兩個(gè)子總體 和(是給定的正整數(shù),且),再?gòu)拿總(gè)子總體中各隨機(jī)抽取個(gè)元素組成樣本.用表示元素同時(shí)出現(xiàn)在樣本中的概率.
(1)求的表達(dá)式(用表示);
(2)求所有的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

小明家訂了一份報(bào)紙,寒假期間他收集了每天報(bào)紙送達(dá)時(shí)間的數(shù)據(jù),并繪制成頻率分布直方圖,如圖所示.

(1)根據(jù)圖中的數(shù)據(jù)信息,求出眾數(shù)和中位數(shù)(精確到整數(shù)分鐘);
(2)小明的父親上班離家的時(shí)間在上午之間,而送報(bào)人每天在時(shí)刻前后半小時(shí)內(nèi)把報(bào)紙送達(dá)(每個(gè)時(shí)間點(diǎn)送達(dá)的可能性相等),求小明的父親在上班離家前能收到報(bào)紙(稱為事件)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

甲、乙、丙三名射擊運(yùn)動(dòng)員射中目標(biāo)的概率分別為、a、a(0<a<1),三人各射擊一次,擊中目標(biāo)的次數(shù)記為ξ.
(1)求ξ的分布列及數(shù)學(xué)期望;
(2)在概率P(ξ=i)(i=0、1、2、3)中,若P(ξ=1)的值最大,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

生產(chǎn)A,B兩種元件,其質(zhì)量按測(cè)試指標(biāo)劃分為:指標(biāo)大于或等于82為正品,小于82為次品,現(xiàn)隨機(jī)抽取這兩種元件各100件進(jìn)行檢測(cè),檢測(cè)結(jié)果統(tǒng)計(jì)如下:

測(cè)試指標(biāo)





元件A
8
12
40
32]
8
元件B
7
18
40
29
6
(1)試分別估計(jì)元件A、元件B為正品的概率;
(2)生產(chǎn)一件元件A,若是正品可盈利50元,若是次品則虧損10元;生產(chǎn)一件元件B,若是正品可盈利100元,若是次品則虧損20元,在(1)的前提下;
(i)求生產(chǎn)5件元件B所獲得的利潤(rùn)不少于300元的概率;
(ii)記X為生產(chǎn)1件元件A和1件元件B所得的總利潤(rùn),求隨機(jī)變量X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案