數(shù)列{an}前n項(xiàng)和為Sn,已知a1=
1
3
,且對(duì)任意正整數(shù)m,n,都有am+n=am•an,若Sn<a恒成立則實(shí)數(shù)a的最小值為
 
考點(diǎn):數(shù)列遞推式
專(zhuān)題:綜合題,等差數(shù)列與等比數(shù)列
分析:由am+n=am•an,令m等于1,確定此數(shù)列是首項(xiàng)和公比都為
1
3
的等比數(shù)列,利用等比數(shù)列的前n項(xiàng)和的公式表示出Sn,Sn=
1
2
(1-
1
3n
)<
1
2
,而Sn<a恒成立,即可得到a的最小值.
解答: 解:令m=1,得到an+1=a1•an
∵a1=
1
3
,
∴q=
1
3
,
∴此數(shù)列是首項(xiàng)為
1
3
,公比也為
1
3
的等比數(shù)列,則Sn=
1
2
(1-
1
3n
)<
1
2
,
∵Sn<a恒成立,∴a≥
1
2
,
則a的最小值為
1
2

故答案為:
1
2
點(diǎn)評(píng):此題考查了等比數(shù)列關(guān)系的確定,掌握不等式恒成立時(shí)所滿(mǎn)足的條件,靈活運(yùn)用等比數(shù)列的前n項(xiàng)和的公式及會(huì)進(jìn)行極限的運(yùn)算,是一道綜合題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=3-4x,g(x)=2x+1,H(x)=f(x)+g(x),x∈R.
(1)設(shè)函數(shù)M(x)=
H(x)-|f(x)-g(x)|
2
,求M(x)的最大值;
(2)判斷H(x)的單調(diào)性,并用定義證明你的結(jié)論;
(3)當(dāng)x∈[a,a+1](a∈R)時(shí),求H(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若定義域在[0,1]的函數(shù)f(x)滿(mǎn)足:
①對(duì)于任意x1,x2∈[0,1],當(dāng)x1<x2時(shí),都有f(x1)≥f(x2);
②f(0)=0;
f(
x
3
)=
1
2
f(x);
④f(1-x)+f(x)=-1,
f(
1
3
)+f(
9
2014
)
=( 。
A、-
9
16
B、-
17
32
C、-
174
343
D、-
512
1007

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)為R上的減函數(shù),且f(x)的圖象經(jīng)過(guò)點(diǎn)A(0,3)和B(3,-1),則不等式-1≤f(2x-1)≤3的解集為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=
x2+a
bx+c
是奇函數(shù),其中b為正整數(shù),f(1)=2,且f(2)>2.
(1)求函數(shù)f(x)的解析式及定義域;
(2)證明函數(shù)f(x)在[
1
2
,1]上的單調(diào)性,并求出f(x)在該區(qū)f(x)在該區(qū)間上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知事件在矩ABCD的邊CD上隨意取一點(diǎn)P,使得△APB的最大邊是AB發(fā)生的概率為
1
2
,則
AD
AB
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知一組數(shù)x1,x2,…,xn的方差是4,則2x1-1,2x2-1,…,2xn-1的標(biāo)準(zhǔn)差是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)Sn為等差數(shù)列{an}的前n項(xiàng)和,若a3=4,S9-S6=27,則該數(shù)列的公差d等于( 。
A、-
6
5
B、-1
C、
6
5
D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)滿(mǎn)足對(duì)任意實(shí)數(shù)a,b,有f(
a+2b
3
)=
f(a)+2f(b)
3
,且f(1)=1,f(4)=7,則f(2014)=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案