分析 (Ⅰ)設$\overrightarrow{AO}$=x$\overrightarrow{AB}$+(1-x)$\overrightarrow{AN}$=3x$\overrightarrow{AM}$+$\frac{1-x}{4}$$\overrightarrow{AC}$,由C,O,M三點共線,由共線定理可知:3x+$\frac{1-x}{4}$=1,求得x的值,$\overrightarrow{AO}$=$\frac{3}{11}$$\overrightarrow{AB}$+$\frac{8}{11}$$\overrightarrow{AC}$=$\frac{3}{11}$$\overrightarrow{m}$+$\frac{2}{11}$$\overrightarrow{n}$;
(Ⅱ)由(1)可知$\overrightarrow{AD}=λ\overrightarrow{AO}$=$\frac{3λ}{11}$$\overrightarrow{AB}$+$\frac{2λ}{11}$$\overrightarrow{AC}$,B,C,D三點共線,$\frac{3λ}{11}$+$\frac{2λ}{11}$=1,即可求得求λ的值.
解答 解:(Ⅰ)由題意可知:設$\overrightarrow{AO}$=x$\overrightarrow{AB}$+(1-x)$\overrightarrow{AN}$,
AB=3AM,AC=4AN,
$\overrightarrow{AO}$=3x$\overrightarrow{AM}$+$\frac{1-x}{4}$$\overrightarrow{AC}$,
由C,O,M三點共線,
∴3x+$\frac{1-x}{4}$=1,
∴x=$\frac{3}{11}$,
∴$\overrightarrow{AO}$=$\frac{3}{11}$$\overrightarrow{AB}$+$\frac{8}{11}$$\overrightarrow{AC}$=$\frac{3}{11}$$\overrightarrow{AB}$+$\frac{2}{11}$$\overrightarrow{AC}$=$\frac{3}{11}$$\overrightarrow{m}$+$\frac{2}{11}$$\overrightarrow{n}$,
(Ⅱ)由(1)可知:$\overrightarrow{AD}=λ\overrightarrow{AO}$=$\frac{3λ}{11}$$\overrightarrow{AB}$+$\frac{2λ}{11}$$\overrightarrow{AC}$,
∵B,C,D三點共線,
$\frac{3λ}{11}$+$\frac{2λ}{11}$=1,解得:λ=$\frac{11}{5}$,
λ的值$\frac{11}{5}$.
點評 本題考查向量共線定理,考查向量的運算,考查數形結合思想,屬于中檔題.
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 16 | B. | 8 | C. | 4 | D. | 非上述情況 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | (-∞,4) | B. | (-∞,4] | C. | (-∞,6) | D. | (-∞,6] |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | m≤3 | B. | m≥3 | C. | m≤-3 | D. | m≥-3 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com