12.已知e是自然對數(shù)的底數(shù),F(xiàn)(x)=2ex-1+x+lnx,f(x)=a(x-1)+3
(1)設(shè)T(x)=F(x)-f(x),當(dāng)a=1+2e-1時,求證:T(x)在(0,+∞)上單調(diào)遞增;
(2)若?x≥1,F(xiàn)(x)≥f(x),求實數(shù)a的取值范圍.

分析 (1)求導(dǎo)數(shù),證明T′(x)>0,即可證明結(jié)論;
(2)若?x≥1,F(xiàn)(x)≥f(x),則2ex-1+x+lnx≥a(x-1)+3,求出左邊的最小值,即可求實數(shù)a的取值范圍.

解答 (1)證明:當(dāng)a=1+2e-1時,T(x)=F(x)-f(x)=2ex-1+x+lnx-(1+2e-1)(x-1)-3
T′(x)=2ex-1+1+$\frac{1}{x}$-(1+2e-1))=2ex-1+$\frac{1}{x}$-2e-1,
∵x>0,∴T′(x)>0,
∴T(x)在(0,+∞)上單調(diào)遞增;
(2)解:若?x≥1,F(xiàn)(x)≥f(x),則2ex-1+x+lnx≥a(x-1)+3
令y=2ex-1+x+lnx,則y′=2ex-1+1+$\frac{1}{x}$,
∵x≥1,∴y′=2ex-1+1+$\frac{1}{x}$>0,函數(shù)單調(diào)遞增,
∴y≥3,
∴?x≥1,3≥a(x-1)+3
∴a(x-1)≤0
∵x≥1,∴a≤0.

點評 本題考查函數(shù)的單調(diào)性的證明,考查恒成立問題,考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=$\frac{1}{3}$x3-x2-8x+4.
(1)求f(x)的單調(diào)區(qū)間;
(2)當(dāng)x∈[-1,5]時,求f(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在底面為梯形的四棱錐P-ABCD中,平面PAB⊥底面ABCD,AD∥BC,AD⊥CD,AP=PB,AD=CD=2,BC=4.
(1)求證:AC⊥PB;
(2)若二面角B-PA-D的大小為120°,求AP的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.直線$\left\{{\begin{array}{l}{x=2+2t}\\{y=-t}\end{array}}\right.$(t為參數(shù))被曲線ρ=4cosθ所截的弦長為( 。
A.4B.$\frac{{8\sqrt{5}}}{5}$C.$\frac{{16\sqrt{5}}}{5}$D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=2cosθ}\\{y=2sinθ}\\{\;}\end{array}\right.$(θ∈[-$\frac{π}{2}$,$\frac{π}{2}$]為參數(shù)),以坐標(biāo)原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為2ρ(cosθ-sinθ)=3.
(Ⅰ)求C1與C2交點的直角坐標(biāo);
(Ⅱ)求C1上任意一點P到C2距離d的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.在平面直角坐標(biāo)系xOy中有不共線三點P(a1,b1),A(a2,b2),B(a3,b3).實數(shù)λ,μ滿足λ+μ=λμ≠0,則以P為起點的向量$λ\overrightarrow{PA}$,$μ\overrightarrow{PB}$的終點連線一定過點( 。
A.(a2+a3-a1,b2+b3-b1B.(b2+b3-b1,a2+a3-a1
C.(a2+a3-2a1,b2+b3-2b1D.(b2+b3-2b1,a2+a3-2a1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,AB為圓O的直徑,P是AB延長線上一點,割線PCD交圓O于C,D兩點,過點P作AP的垂線,交直線AC于點E,交直線AD于點F.
(1)證明:F、E、C、D四點共圓;
(2)若AP=10,BP=2,CP=3,求sin∠DPF的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.設(shè)函數(shù)f(x)=x2ex
(Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)若x∈[-2,2]時,不等式f(x)<m恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在直角坐標(biāo)系xOy中,以坐標(biāo)原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線C:ρsin2θ-4cosθ=0,直線l過點M(0,4)且斜率為-1.
(Ⅰ)將曲線C的極坐標(biāo)方程化為直角坐標(biāo)方程,寫出直線l的標(biāo)準(zhǔn)參數(shù)方程;
(Ⅱ)若直線l與曲線C交于A、B兩點,求|AB|的值.

查看答案和解析>>

同步練習(xí)冊答案