13.若函數(shù)f(x)=$\left\{\begin{array}{l}{x^2}-1,x≥0\\-x+1,x<0\end{array}$,則f(-1)的值為( 。
A.-2B.2C.-1D.1

分析 由-1<0,得f(-1)=-(-1)+1,由此能求出結(jié)果.

解答 解:∵函數(shù)f(x)=$\left\{\begin{array}{l}{x^2}-1,x≥0\\-x+1,x<0\end{array}$,
∴f(-1)=-(-1)+1=2.
故選:B.

點(diǎn)評(píng) 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意函數(shù)性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.?dāng)?shù)列{an}中,an是與$\sqrt{n}$(n∈N*)最接近的正整數(shù),則$\sum_{i=1}^{100}$$\frac{1}{{a}_{i}}$=19.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.閱讀如圖的程序框圖.若輸入n=5,則輸出k的值為( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.正六邊形的對(duì)角線的條數(shù)是9.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.下列集合中表示同一集合的是( 。
A.M={(3,2)},N={(2,3)}B.M={2,3},N={3,2}
C.M={(x,y)|x+y=1},N={y|x+y=1}D.M={2,3},N={(2,3)}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知函數(shù)y=f(x)與y=F(x)的圖象關(guān)于y軸對(duì)稱(chēng),當(dāng)函數(shù)y=f(x)和y=F(x)在區(qū)間[a,b]同時(shí)遞增或同時(shí)遞減時(shí),把區(qū)間[a,b]叫做函數(shù)y=f(x)的“不動(dòng)區(qū)間”.若區(qū)間[1,2]為函數(shù)f(x)=|2x-t|的“不動(dòng)區(qū)間”,則實(shí)數(shù)t的取值范圍是( 。
A.(0,2]B.[$\frac{1}{2}$,+∞)C.[$\frac{1}{2}$,2]D.[$\frac{1}{2}$,2]∪[4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.${∫}_{-3}^{3}$($\sqrt{9-{x}^{2}}$-x3)dx的值為$\frac{9π}{2}$,f(x)=$\frac{{a}^{2}}{x}$(a>0)在x=x0處導(dǎo)數(shù)為-4,則x0=±$\frac{a}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知$f(x)={3^x}-{log_{\frac{1}{3}}}$x,實(shí)數(shù)a、b、c滿足f(a)•f(b)•f(c)<0,且0<a<b<c,若實(shí)數(shù)x0是函數(shù)f(x)的一個(gè)零點(diǎn),那么下列不等式中,不可能成立的是( 。
A.x0<aB.x0>bC.x0<cD.x0>c

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知函數(shù)$f(x)=\left\{\begin{array}{l}{x^4}+1,x<0\\{4^x}-1,x>0\end{array}\right.$,則方程f(x)=5的解集是( 。
A.{$-\sqrt{2}$,$\sqrt{2}$,log4 6}B.{$-\sqrt{2}$,log4 6}C.{$\sqrt{2}$,log4 6}D.{$-\sqrt{2}$,$\sqrt{6}$)

查看答案和解析>>

同步練習(xí)冊(cè)答案