關(guān)于某設(shè)備的使用年限x和所支出的維修費(fèi)用y(單位:萬(wàn)元),有如下統(tǒng)計(jì)資料,由資料可知y與x有線性相關(guān)關(guān)系,試求:
x 2 3 4 5 6
y 2.2 3.8 5.5 6.5 7.0
(1)該線性回歸方程;  
(2)估計(jì)使用年限為10年時(shí),維修費(fèi)用是多少萬(wàn)元?
參考數(shù)據(jù):2×2.2+3×3.8+4×5.5+5×6.5+6×7.0=112.3
參考公式:
b
=
n
i=1
xiyi-n
.
x
.
y
n
i=1
xi2-n
.
x
2
,
a
=
.
y
-
b
.
x
考點(diǎn):線性回歸方程
專題:計(jì)算題,概率與統(tǒng)計(jì)
分析:(1)根據(jù)所給的數(shù)據(jù),做出變量x,y的平均數(shù),根據(jù)最小二乘法做出線性回歸方程的系數(shù)b,在根據(jù)樣本中心點(diǎn)一定在線性回歸方程上,求出a的值,寫出線性回歸方程;
(2)當(dāng)自變量為10時(shí),代入線性回歸方程,求出維修費(fèi)用,這是一個(gè)預(yù)報(bào)值.
解答: 解:(1)由題意知
.
x
=
1
5
(2+3+4+5+6)=4,
.
y
=
1
5
(2.2+3.8+5.5+6.5+7.0)=5,
b=
112.3-5×4×5
4+9+16+25+36-5×16
≈1.23,
a=5-4×1.23=0.08,
y
=1.23x+0.08.
(2)當(dāng)自變量x=10時(shí),預(yù)報(bào)維修費(fèi)用是y=1.23×10+0.08=12.38萬(wàn)元.
點(diǎn)評(píng):本題考查線性回歸方程,解題的關(guān)鍵是線性回歸直線一定過(guò)樣本中心點(diǎn),這是求解線性回歸方程的步驟之一
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

用五點(diǎn)法作出函數(shù)y=sin(2x-
4
)在一個(gè)周期內(nèi)的簡(jiǎn)圖,(列表,描點(diǎn))并說(shuō)明它是如何由y=sinx變換得到的?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(2x+3)的定義域?yàn)椋?,4),求f(3x+1)的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等比數(shù)列{an}的前n項(xiàng)和為Sn,a4=2a3,S2=6.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若數(shù)列{bn}滿足:bn=an+log2an,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)的一條漸近線的方程為y=
2
x,焦點(diǎn)到漸近線的距離為
2

(1)求雙曲線C的方程;
(2)已知傾斜角為
4
的直線l與雙曲線C交于不同的兩點(diǎn)A,B,且線段AB的中點(diǎn)在圓x2+y2=5上,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=
2
sin(2x-
π
4
)+2cos2x.
(1)求f(x)的對(duì)稱軸方程;
(2)設(shè)函數(shù)g(x)對(duì)任意x∈?,都有g(shù)(x)=g(x+
π
2
),且當(dāng)x∈[0,
π
2
]時(shí),g(x)=f(x)-1,求g(x)在區(qū)間[-π,0]上的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知(2a3+
1
a
n的展開式中常數(shù)項(xiàng)是第7項(xiàng),求展開式中二項(xiàng)式系數(shù)最大的項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求證:以A(4,1,9),B(10,-1,6),C(2,4,3)為頂點(diǎn)的三角形是等腰直角三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A、B、C為△ABC的三內(nèi)角,且其對(duì)邊分別為a、b、c,若
m
=(-cos
A
2
,sin
A
2
),
n
=(cos
A
2
,sin
A
2
),且
m
n
=
1
2

(1)求角A的值;
(2)若a=2
3
,b+c=4,求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案