【題目】海水稻就是耐鹽堿水稻,是一種介于野生稻和栽培稻之間的普遍生長(zhǎng)在海邊灘涂地區(qū)的水稻,具有抗旱抗?jié)场⒖共∠x害、抗倒伏抗鹽堿等特點(diǎn).近年來(lái),我國(guó)的海水稻研究取得了階段性成果,目前已開展了全國(guó)大范圍試種.某農(nóng)業(yè)科學(xué)研究所分別抽取了試驗(yàn)田中的海水稻以及對(duì)照田中的普通水稻各株,測(cè)量了它們的根系深度(單位:),得到了如下的莖葉圖,其中兩豎線之間表示根系深度的十位數(shù),兩邊分別是海水稻和普通水稻根系深度的個(gè)位數(shù),則下列結(jié)論中不正確的是(

A.海水稻根系深度的中位數(shù)是

B.普通水稻根系深度的眾數(shù)是

C.海水稻根系深度的平均數(shù)大于普通水稻根系深度的平均數(shù)

D.普通水稻根系深度的方差小于海水稻根系深度的方差

【答案】D

【解析】

由莖葉圖可知兩組數(shù)據(jù),分別計(jì)算中位數(shù),均值,方差即可求解.

A中,海水稻根系深度中位數(shù)為,正確;B中普通水稻根系深度的眾數(shù)由莖葉圖知是,正確;C中,由莖葉圖可知海水稻根系深度平均數(shù)大于普通稻根系深度的平均數(shù),正確;D中,分別計(jì)算兩組數(shù)據(jù)的方差,

海水稻根系深度的平均值為,

普通水稻根系深度的平均值為

海水稻,

普通稻

所以海水稻根系深度方差小,錯(cuò)誤.

故選:D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)橢圓的左焦點(diǎn)為,上頂點(diǎn)為.已知橢圓的短軸長(zhǎng)為4,離心率為.

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)點(diǎn)在橢圓上,且異于橢圓的上、下頂點(diǎn),點(diǎn)為直線軸的交點(diǎn),點(diǎn)軸的負(fù)半軸上.若為原點(diǎn)),且,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了配合今年上海迪斯尼游園工作,某單位設(shè)計(jì)了統(tǒng)計(jì)人數(shù)的數(shù)學(xué)模型:以表示第個(gè)時(shí)刻進(jìn)入園區(qū)的人數(shù);以表示第個(gè)時(shí)刻離開園區(qū)的人數(shù).設(shè)定以分鐘為一個(gè)計(jì)算單位,上午點(diǎn)分作為第個(gè)計(jì)算人數(shù)單位,即;點(diǎn)分作為第個(gè)計(jì)算單位,即;依次類推,把一天內(nèi)從上午點(diǎn)到晚上點(diǎn)分分成個(gè)計(jì)算單位(最后結(jié)果四舍五入,精確到整數(shù)).

1)試計(jì)算當(dāng)天點(diǎn)至點(diǎn)這一小時(shí)內(nèi),進(jìn)入園區(qū)的游客人數(shù)、離開園區(qū)的游客人數(shù)各為多少?

2)假設(shè)當(dāng)日?qǐng)@區(qū)游客總?cè)藬?shù)達(dá)到或超過(guò)萬(wàn)時(shí),園區(qū)將采取限流措施.該單位借助該數(shù)學(xué)模型知曉當(dāng)天點(diǎn)(即)時(shí),園區(qū)總?cè)藬?shù)會(huì)達(dá)到最高,請(qǐng)問(wèn)當(dāng)日是否要采取限流措施?說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線、與曲線分別相交于點(diǎn)、,我們將四邊形稱為曲線的內(nèi)接四邊形.

1)若直線將單位圓分成長(zhǎng)度相等的四段弧,求的值;

2)若直線,與圓分別交于點(diǎn)、,求證:四邊形為正方形;

3)求證:橢圓的內(nèi)接正方形有且只有一個(gè),并求該內(nèi)接正方形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C)的焦距為,且右焦點(diǎn)F與短軸的兩個(gè)端點(diǎn)組成一個(gè)正三角形.若直線l與橢圓C交于、,且在橢圓C上存在點(diǎn)M,使得:(其中O為坐標(biāo)原點(diǎn)),則稱直線l具有性質(zhì)H.

1)求橢圓C的方程;

2)若直線l垂直于x軸,且具有性質(zhì)H,求直線l的方程;

3)求證:在橢圓C上不存在三個(gè)不同的點(diǎn)PQ、R,使得直線、、都具有性質(zhì)H.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】程序框圖如圖所示,若其輸出結(jié)果是140,則判斷框中填寫的是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn),(為正整數(shù))都在函數(shù)的圖象上.

1)若數(shù)列是等差數(shù)列,證明:數(shù)列是等比數(shù)列;

2)設(shè),過(guò)點(diǎn)的直線與兩坐標(biāo)軸所圍成的三角形面積為,試求最小的實(shí)數(shù),使對(duì)一切正整數(shù)恒成立;

3)對(duì)(2)中的數(shù)列,對(duì)每個(gè)正整數(shù),在之間插入個(gè)3,得到一個(gè)新的數(shù)列,設(shè)是數(shù)列的前項(xiàng)和,試探究2016是否是數(shù)列中的某一項(xiàng),寫出你探究得到的結(jié)論并給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線是雙曲線的一條漸近線,點(diǎn)都在雙曲線上,直線軸相交于點(diǎn),設(shè)坐標(biāo)原點(diǎn)為.

1)求雙曲線的方程,并求出點(diǎn)的坐標(biāo)(用表示);

2)設(shè)點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為,直線軸相交于點(diǎn).問(wèn):在軸上是否存在定點(diǎn),使得?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

3)若過(guò)點(diǎn)的直線與雙曲線交于兩點(diǎn),且,試求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是某商場(chǎng)2018年洗衣機(jī)、電視機(jī)和電冰箱三種電器各季度銷量的百分比堆積圖(例如:第3季度內(nèi),洗衣機(jī)銷量約占,電視機(jī)銷量約占,電冰箱銷量約占).根據(jù)該圖,以下結(jié)論中一定正確的是( )

A. 電視機(jī)銷量最大的是第4季度

B. 電冰箱銷量最小的是第4季度

C. 電視機(jī)的全年銷量最大

D. 電冰箱的全年銷量最大

查看答案和解析>>

同步練習(xí)冊(cè)答案