【題目】已知m>0,n>0,x=m+n,y= .
(1)求xy的最小值;
(2)若2x+y=15,求x的取值范圍.
【答案】
(1)解:m>0,n>0,依題意,xy=(m+n)( )=17+ , ≥17+2 =25,
當(dāng)且僅當(dāng)n=4m時(shí)“=”成立
(2)解:∵2x+y=15,∴y=15﹣2x,
由(1)得:xy≥25,
∴x(15﹣2x)≥25,
∴2x2﹣15x+25≤0,
∴ ≤x≤5
【解析】(1)應(yīng)用級別不等式的性質(zhì)求出其最小值即可;(2)求出y=15﹣2x,由(1)得:xy≥25,消去y解關(guān)于x的不等式即可.
【考點(diǎn)精析】利用基本不等式對題目進(jìn)行判斷即可得到答案,需要熟知基本不等式:,(當(dāng)且僅當(dāng)時(shí)取到等號);變形公式:.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,邊長為4的正方形ABCD所在平面與正三角形PAD所在平面互相垂直,M,Q分別為PC,AD的中點(diǎn).
(1)求證:PA∥平面MBD;
(2)求二面角P﹣BD﹣A的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x,y的方程C:x2+y2﹣2x﹣4y+m=0
(1)當(dāng)方程C表示圓時(shí),求m的取值范圍;
(2)若圓C與直線l1:x+2y﹣4=0相交于M,N兩點(diǎn),且|MN|= ,求m的值;
(3)在(2)條件下,若圓C上存在四點(diǎn)到直線l2:x﹣2y+b=0的距離均為 ,試求b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,記正方形ABCD四條邊的中點(diǎn)為S,M,N,T,連接四個(gè)中點(diǎn)得小正方形SMNT.將正方形ABCD,正方形SMNT繞對角線AC旋轉(zhuǎn)一周得到的兩個(gè)旋轉(zhuǎn)體的體積依次記為V1 , V2 , 則V1:V2=( )
A.8:1
B.2:1
C.4:3
D.8:3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱A1B1C1﹣A2B2C2中,各側(cè)棱均垂直于底面,∠A1B1C1=90°,A1B1=B1C1=3,C1M=2B1N=2,則直線B1C1與平面A1MN所成角的正弦值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)= x﹣lnx(x>0),則函數(shù)f(x)( )
A.在區(qū)間(0,1)內(nèi)有零點(diǎn),在區(qū)間(1,+∞)內(nèi)無零點(diǎn)
B.在區(qū)間(0,1)內(nèi)有零點(diǎn),在區(qū)間(1,+∞)內(nèi)有零點(diǎn)
C.在區(qū)間(0,3),(3,+∞)均無零點(diǎn)
D.在區(qū)間(0,3),(3,+∞)均有零點(diǎn)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)工廠生產(chǎn)某種產(chǎn)品每年需要固定投資 萬元,此外每生產(chǎn) 件該產(chǎn)品還需要增加投資 萬元,年產(chǎn)量為 件.當(dāng) 時(shí),年銷售總收入為 萬元;當(dāng) 時(shí),年銷售總收入為 萬元.記該工廠生產(chǎn)并銷售這種產(chǎn)品所得的年利潤為 萬元。
(1)求 (萬元)關(guān)于 (件)的函數(shù)關(guān)系式;
(2)該工廠的年產(chǎn)量為多少件時(shí),所得年利潤最大?并求出最大值.(年利潤=年銷售總收入年總投資)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了得到函數(shù) 的圖象,可以將函數(shù)y=cos2x的圖象( )
A.向左平移 個(gè)單位長度
B.向左平移 個(gè)單位長度
C.向右平移 個(gè)單位長度
D.向右平移 個(gè)單位長度
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐 中, 底面 , , ,點(diǎn) 為棱 的中點(diǎn).
(1)證明: 面 ;
(2)證明 ;
(3)求三棱錐 的體積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com