(本題滿分16分)已知橢圓的離心率為.
⑴若圓(x-2)2+(y-1)2=與橢圓相交于A、B兩點且線段AB恰為圓的直徑,求橢圓W方程;
⑵設(shè)L為過橢圓右焦點F的直線,交橢圓于M、N兩點,且L的傾斜角為600.求的值.
⑶在(1)的條件下,橢圓W的左右焦點分別為F1、 F2,點R在直線l:x-y+8=0上.當(dāng)∠F1RF2取最大值時,求的值.

解:(1)設(shè)A(x1,y1),B(x2,y2),AB的方程為y-1="k(x-2)" 即y=kx+1-2k①
 ∵離心率e=
∴橢圓方程可化為
將①代入②得(1+2k2)x2+4(1-2k)·kx
+2(1-2k)2-2b2=0
∵x1+x2=   ∴k=-1
∴x1x2= 
 
 
∴b2="8    "
∴橢圓方程為
(2)設(shè),則由第二定義知 或
 或.
(3)當(dāng)∠F1RF2取最大值時,過R、F1、F2的圓的圓心角最大,故其半徑最小,與直線l相切.
直線l與x軸于S(-8,0),(可證)

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2010-2011年江蘇省淮安市楚州中學(xué)高二上學(xué)期期末考試數(shù)學(xué)試卷 題型:解答題

(本題滿分16分)
已知函數(shù),且對任意,有.
(1)求;
(2)已知在區(qū)間(0,1)上為單調(diào)函數(shù),求實數(shù)的取值范圍.
(3)討論函數(shù)的零點個數(shù)?(提示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年浙江省高三10月階段性測試理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分16分)已知函數(shù)為實常數(shù)).

(I)當(dāng)時,求函數(shù)上的最小值;

(Ⅱ)若方程在區(qū)間上有解,求實數(shù)的取值范圍;

(Ⅲ)證明:

(參考數(shù)據(jù):

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆江蘇省高二下期中理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分16分) 已知橢圓的離心率為分別為橢圓的左、右焦點,若橢圓的焦距為2.

 ⑴求橢圓的方程;

⑵設(shè)為橢圓上任意一點,以為圓心,為半徑作圓,當(dāng)圓與橢圓的右準線有公共點時,求△面積的最大值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆江蘇省高一上學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分16分)已知函數(shù)是定義在上的偶函數(shù),且當(dāng)時,。

(Ⅰ)求的值;

(Ⅱ)求函數(shù)上的解析式;

(Ⅲ)若關(guān)于的方程有四個不同的實數(shù)解,求實數(shù)的取值范圍。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:江蘇省2009-2010學(xué)年高二第二學(xué)期期末考試 題型:解答題

本題滿分16分)已知圓內(nèi)接四邊形ABCD的邊長分別為AB = 2,BC = 6,CD = DA = 4 ;求四邊形ABCD的面積.

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

同步練習(xí)冊答案