【題目】如圖,在四棱錐中,平面平面,,,

1)求證:;

2)若為線段上的一點(diǎn),,,求平面與平面所成銳二面角的余弦值.

【答案】(1)證明見(jiàn)解析(2)

【解析】

1)設(shè)于點(diǎn),證明平面內(nèi)的兩條相交直線即可得到線面垂直,再由線面垂直的性質(zhì),可證明線線垂直;

(2)找到三條兩兩互相垂直的直線,以為原點(diǎn),以射線軸,軸,軸正半軸建立空間直角坐標(biāo)系,求出平面的法向量,平面的法向量,求法向量夾角的余弦值,即可求得答案.

設(shè)于點(diǎn),,,所以,所以,在中,

,得,即,

又平面平面,平面平面平面,

所以平面,

平面,所以

2)平面平面,平面平面,平面,,所以平面,

為原點(diǎn),以射線軸,軸,軸正半軸建立空間直角坐標(biāo)系,,,,,

設(shè)平面的法向量為,則,

,得

設(shè)平面的法向量為,

,取,得,

設(shè)所求角為,則,

所求的銳二面角余弦值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)調(diào)查學(xué)生記憶力的研究團(tuán)隊(duì)從某中學(xué)隨機(jī)挑選100名學(xué)生進(jìn)行記憶測(cè)試,通過(guò)講解100個(gè)陌生單詞后,相隔十分鐘進(jìn)行聽(tīng)寫(xiě)測(cè)試,間隔時(shí)間(分鐘)和答對(duì)人數(shù)的統(tǒng)計(jì)表格如下:

時(shí)間(分鐘)

10

20

30

40

50

60

70

80

90

100

答對(duì)人數(shù)

98

70

52

36

30

20

15

11

5

5

1.99

1.85

1.72

1.56

1.48

1.30

1.18

1.04

0.7

0.7

時(shí)間與答對(duì)人數(shù)的散點(diǎn)圖如圖:

附:,,,對(duì)于一組數(shù)據(jù),……,,其回歸直線的斜率和截距的最小二乘估計(jì)分別為:,.請(qǐng)根據(jù)表格數(shù)據(jù)回答下列問(wèn)題:

1)根據(jù)散點(diǎn)圖判斷,,哪個(gè)更適宣作為線性回歸類(lèi)型?(給出判斷即可,不必說(shuō)明理由)

2)根據(jù)(1)的判斷結(jié)果,建立的回歸方程;(數(shù)據(jù)保留3位有效數(shù)字)

3)根據(jù)(2)請(qǐng)估算要想記住的內(nèi)容,至多間隔多少分鐘重新記憶一遍.(參考數(shù)據(jù):,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2019年慶祝中華人民共和國(guó)成立70周年閱兵式彰顯了中華民族從站起來(lái)、富起來(lái)邁向強(qiáng)起來(lái)的雄心壯志.閱兵式規(guī)模之大、類(lèi)型之全均創(chuàng)歷史之最,編組之新、要素之全彰顯強(qiáng)軍成就.裝備方陣堪稱(chēng)強(qiáng)軍利刃”“強(qiáng)國(guó)之盾,見(jiàn)證著人民軍隊(duì)邁向世界一流軍隊(duì)的堅(jiān)定步伐.此次大閱兵不僅得到了全中國(guó)人的關(guān)注,還得到了無(wú)數(shù)外國(guó)人的關(guān)注.某單位有10位外國(guó)人,其中關(guān)注此次大閱兵的有8位,若從這10位外國(guó)人中任意選取3位做一次采訪,則被采訪者中至少有2位關(guān)注此次大閱兵的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)是函數(shù)定義域的一個(gè)子集,若存在,使得成立,則稱(chēng)的一個(gè)“準(zhǔn)不動(dòng)點(diǎn)”,也稱(chēng)在區(qū)間上存在準(zhǔn)不動(dòng)點(diǎn),已知,.

(1)若,求函數(shù)的準(zhǔn)不動(dòng)點(diǎn);

(2)若函數(shù)在區(qū)間上存在準(zhǔn)不動(dòng)點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)關(guān)于的不等式的解集是,若,則的取值范圍是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C的離心率,橢圓C上的點(diǎn)到其左焦點(diǎn)的最大距離為.

(Ⅰ)求橢圓C的方程;

(Ⅱ)過(guò)點(diǎn)A作直線與橢圓相交于點(diǎn)B,則軸上是否存在點(diǎn)P,使得線段,且?若存在,求出點(diǎn)P坐標(biāo);否則請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定義在上的偶函數(shù)滿足,且時(shí),,則函數(shù)上的所有零點(diǎn)之和為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)Tn為數(shù)列{an}的前n項(xiàng)的積,即Tn=a1a2an

1)若Tn=n2,求數(shù)列{an}的通項(xiàng)公式;

2)若數(shù)列{an}滿足Tn=1an)(nN*),證明數(shù)列為等差數(shù)列,并求{an}的通項(xiàng)公式;

3)數(shù)列{an}共有100項(xiàng),且滿足以下條件:

;

1k99kN*).

(Ⅰ)求的值;

(Ⅱ)試問(wèn)符合條件的數(shù)列共有多少個(gè)?為什么?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公園草坪上有一扇形小徑(如圖),扇形半徑為,中心角為,甲由扇形中心出發(fā)沿以每秒2米的速度向快走,同時(shí)乙從出發(fā),沿扇形弧以每秒米的速度向慢跑,記秒時(shí)甲、乙兩人所在位置分別為,,通過(guò)計(jì)算,判斷下列說(shuō)法是否正確:

(1)當(dāng)時(shí),函數(shù)取最小值;

(2)函數(shù)在區(qū)間上是增函數(shù);

(3)若最小,則;

(4)上至少有兩個(gè)零點(diǎn);

其中正確的判斷序號(hào)是______(把你認(rèn)為正確的判斷序號(hào)都填上)

查看答案和解析>>

同步練習(xí)冊(cè)答案