4.如圖,長方形ABCD,M,N分別為AB,AD上異于點A的兩點,現(xiàn)把△AMN沿著MN翻折,記AC與平面BCD所成的角為θ1,直線AC與直線MN所成的角為θ2,則θ1與θ2的大小關(guān)系是( 。
A.θ12B.θ1>θ2C.θ1<θ2D.不能確定

分析 作AO⊥平面BCD,垂足是O,連接CO,過點C作直線l∥MN,在l上取點H,令CH=CO,在△AOC和△AHC中,CO=CH,AO⊥平面BCD,從而AO<AH,由此能求出θ1<θ2

解答 解:作AO⊥平面BCD,垂足是O,連接C
過點C作直線l∥MN,在l上取點H,令CH=CO,
在△AOC和△AHC中,CO=CH,AO⊥平面BCD,
∴AO<AH,
∴∠ACO<∠ACH,
∵AC與平面BCD所成的角為θ1,直線AC與直線MN所成的角為θ2,
AO⊥平面BCD,CH∥MN,
∴∠ACO=θ1,∠ACH=θ2
∴θ1<θ2
故選:C.

點評 本題考查直線與平面所成的角和直線與直線所成的角的大小關(guān)系的判斷,是中檔題,解題時要認真審題,注意空間思維能力的培養(yǎng).

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

4.如圖所示,正方形AA1D1D與矩形ABCD所在平面互相垂直,AB=2AD=2,點E為AB的中點.
(1)求證:BD1∥平面A1DE;
(2)求直線A1E與平面AD1E所成角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.如圖,在長方體ABCD-A1B1C1D1中,AB=4,AD=AA1=3,M是線段B1D1的中點.
(1)求證:BM∥平面D1AC
(2)求B1到平面D1AC的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.函數(shù)y=x2+4x+3,x∈[-3,+∞)的值域是[-1,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.某中學對男女學生是否喜愛古典音樂進行了一個調(diào)查,調(diào)查者對學校高三年級隨機抽取了100名學生,調(diào)查結(jié)果如表:
喜愛不喜愛總計
男學生6080
女學生
總計7030
(1)完成如表,并根據(jù)表中數(shù)據(jù),判斷是否有95%的把握認為“男學生和女學生喜歡古典音樂的程度有差異”;
(2)從以上被調(diào)查的學生中以性別為依據(jù)采用分層抽樣的方式抽取10名學生,再從這10名學生中隨機抽取5名學生去某古典音樂會的現(xiàn)場觀看演出,求正好有X個男生去觀看演出的分布列及期望.
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k00.1000.0500.010
k02.7063.8416.635

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.已知函數(shù)f(x)=sinx+x3,x∈R,若實數(shù)a,b滿足f(a-1)+f(b)=0,則a+b=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.某種產(chǎn)品具有一定時效性,在這個時期內(nèi),由市場調(diào)查可知:每件產(chǎn)品獲利a元,在不作廣告宣傳的前提下可賣出b件;若作廣告宣傳,廣告費為n+1(n∈N)千元時比廣告費為n千元時多賣出$\frac{{2}^{n+1}}$件,設(shè)作n(n∈N)千元廣告時銷售量為Cn件.
(1)試寫出銷售量Cn與n(n∈N)的函數(shù)關(guān)系式.
(2)當a=10,b=4000時,廠家應(yīng)作幾千元廣告,才能獲取最大利潤?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.一個學校高一、高二、高三學生數(shù)之比為5:2:3,若用分層抽樣抽取容量為200的樣本,則應(yīng)從高三學生中抽取的人數(shù)是( 。
A.20B.40C.60D.80

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.下列說法中正確的個數(shù)為( 。
①若樣本數(shù)據(jù)x1,x2,…,xn的平均數(shù)$\overline x$=5,則樣本數(shù)據(jù)2x1+1,2x2+1,…,2xn+1的平均數(shù)為10
②將一組數(shù)據(jù)中的每個數(shù)據(jù)都減去同一個數(shù)后,平均數(shù)與方差均沒有變化
③采用系統(tǒng)抽樣法從某班按學號抽取5名同學參加活動,學號為5,16,27,38,49的同學均被選出,則該班學生人數(shù)可能為60.
A.0B.1C.2D.3

查看答案和解析>>

同步練習冊答案