若函數(shù)f(x)為偶函數(shù),x>0時,f(x)單調(diào)遞增,P=f(-π),Q=f(e),R=f(
2
),則P,Q,R的大小為(  )
A、R>Q>P
B、P>Q>R
C、P>R>Q
D、Q>R>P
考點:奇偶性與單調(diào)性的綜合
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由函數(shù)f(x)為偶函數(shù),可得P=f(-π)=f(π),進(jìn)而上x>0時,f(x)遞增,比較三個自變量的大小,可得結(jié)論.
解答: 解:∵函數(shù)f(x)為偶函數(shù),
∴P=f(-π)=f(π),
∵x>0時,f(x)遞增,且π>e>
2
>0,
故P>Q>R,
故選:B
點評:本題考查的知識點是函數(shù)奇偶性的性質(zhì),其中熟練掌握偶函數(shù)滿足f(-x)=f(x),是解答的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若實數(shù)x,y滿足xy=1,則x2+2y2的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x∈R,則“x<0”是“x<cosx”的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sin2α=
1
3
,則cos2(α-
π
4
)=( 。
A、
2
3
B、
3
4
C、
4
5
D、
5
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x,y∈R,a>0,且|x|+|y|≤a,2x+y+1最大值小于2,則實數(shù)a的取值范圍為(  )
A、(0,1)
B、(0,
1
2
C、[
1
2
,1)
D、(0,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

a
=(2,1),
b
=(3,4),則向量
a
+
b
a
-
b
的夾角為( 。
A、銳角B、直角C、鈍角D、π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列四個圖中,函數(shù)y=
10ln|x+1|
x+1
的圖象可能是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某校對高三年級1200名學(xué)生進(jìn)行健康檢查,按性別用分層抽樣的方法抽取一個容量為120人的樣本.已知女生抽到了55人,則該校男生的人數(shù)是( 。
A、65B、550
C、600D、650

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行如圖所示的程序框圖,則輸出的n為( 。
A、4B、5C、6D、7

查看答案和解析>>

同步練習(xí)冊答案