已知點集L={(x,y)|y=
m
n
}
,其中
m
=(2x-b,1),
n
=(1,b+1)
,點列Pn(an,bn)在L中,P1為L與y軸的交點,等差數(shù)列{an}的公差為1,n∈N+
(1)求數(shù)列{an},{bn}的通項公式;
(2)若cn=
5
n•|P1Pn|
(n≥2)
,求
lim
n→∞
(c1+c2+…+cn)
分析:(1)利用向量的數(shù)量積求出直線L的方程,求出a1=0,b1=1,利用等差數(shù)列的定義求出求數(shù)列{an},{bn}的通項公式;
(2)利用Pn(an,bn)在L上,求出|P1Pn|關于n的表達式,通過cn=
5
n•|P1Pn|
(n≥2)
,利用裂項法求出前n項和,然后求
lim
n→∞
(c1+c2+…+cn)
的值即可.
解答:解:(1)由
y=
m
n
m
=(2x-b,1)
n
=(1,b+1)
,得y=2x+1
∴L:y=2x+1,
∴P1(0,1),
則a1=0,b1=1,
∴an=n-1(n∈N+),bn=2n-1(n∈N+
(2)由(1)可知P1(0,1),
當n≥2時,Pn(n-1,2n-1),
|P1Pn|=
(n-1)2+(2n-2)2
=
5
(n-1)

cn=
5
n|P1Pn|
=
1
n(n-1)
=
1
n-1
-
1
n

lim
n→∞
(c1+c2+…+cn)

=
lim
n→∞
[(1-
1
2
)+(
1
2
-
1
3
)+…(
1
n-1
-
1
n
)]=
lim
n→∞
(1-
1
n
)=1
點評:本題考查直線、向量、數(shù)列的綜合問題,數(shù)列通項公式已經前n項和的求法,數(shù)列極限的求解方法,考查計算能力,轉化思想.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知點集L={(x,y)|y=
m
n
}
,其中
m
=(2x-1,1),
n
=(1,2)
,點列Pn(an,bn)在L中,P1為L與y軸的公共點,等差數(shù)列{an}的公差為1.
(I)求數(shù)列{an},{bn}的通項公式;
(Ⅱ)若cn=
5
n|
P1Pn
|
(n≥2),c1=1
,數(shù)列{cn}的前n項和Sn滿足M+n2Sn≥6n對任意的n∈N*都成立,試求M的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點集L={(x,y)|y=
m
n
}
,其中
m
=(2x-b,1),
n
=(1,b+1),點列Pn(an,bn)在L中,P1為L與y軸的交點,等差數(shù)列{an}的公差為1,n∈N*
(I)求數(shù)列{bn}的通項公式;
(Ⅱ)若f(n)=
an  n為正奇數(shù)
bn  n為正偶數(shù)
,令Sn=f(1)+f(2)+f(3)+…+f(n);試寫出Sn關于n的函數(shù)解析式;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點集L={(x,y)|y=
m
n
}
,其中
m
=(2x-b,1),
n
=(1,1+b)
,又知點列Pn(an,bn)∈L,P1為L與y軸的交點.等差數(shù)列{an}的公差為1,n∈N*
(Ⅰ)求Pn(an,bn);
(Ⅱ)若f(n)=
an,n=2k-1
bn,n=2k
k∈N*,f(k+11)=2f(k)
,求出k的值;
(Ⅲ)對于數(shù)列{bn},設Sn是其前n項和,是否存在一個與n無關的常數(shù)M,使
Sn
S2n
=M
,若存在,求出此常數(shù)M,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點集L={(x,y)|y=
m
n
}
,其中
m
=(2x-b,1),
n
=(1,b+1)
,點列Pn(an,bn)在L中,P1為L與y軸的交點,等差數(shù)列{an}的公差為1,(n∈N*
(1)求數(shù)列{an},{bn}的通項公式;
(2)若cn=
5
n•|P1Pn|
,(n≥2)
,求
lim
n→∞
(c2+c3+…+cn)

(3)若f(n)=
an,n=2k-1
bn,n=2k
(k∈N*)
,是否存在k∈N*,使得f(k+11)=2f(k),若存在,求出k的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(理) 已知點集L={(x,y)|y=
m
n
}
,其中
m
=(x-2b,2)
n
=(1,b+1)
,點Pn(an,bn)∈L,P1=L∩{(x,y)|x=1},且an+1-an=1,則數(shù)列{bn}的通項公式為
 

查看答案和解析>>

同步練習冊答案