【題目】某“芝麻開(kāi)門(mén)”娛樂(lè)活動(dòng)中,共有扇門(mén),游戲者根據(jù)規(guī)則開(kāi)門(mén),并根據(jù)打開(kāi)門(mén)的數(shù)量獲取相應(yīng)獎(jiǎng)勵(lì).已知開(kāi)每扇門(mén)相互獨(dú)立,且規(guī)則相同,開(kāi)每扇門(mén)的規(guī)則是:從給定的把鑰匙(其中有且只有把鑰匙能打開(kāi)門(mén))中,隨機(jī)地逐把抽取鑰匙進(jìn)行試開(kāi),鑰匙使用后不放回.若門(mén)被打開(kāi),則轉(zhuǎn)為開(kāi)下一扇門(mén);若連續(xù)次未能打開(kāi),則放棄這扇門(mén),轉(zhuǎn)為開(kāi)下一扇門(mén);直至扇門(mén)都進(jìn)行了試開(kāi),活動(dòng)結(jié)束.

1)設(shè)隨機(jī)變量為試開(kāi)第一扇門(mén)所用的鑰匙數(shù),求的分布列及數(shù)學(xué)期望;

2)求恰好成功打開(kāi)扇門(mén)的概率.

【答案】1)見(jiàn)解析,;(2

【解析】

1)由題意可知,隨機(jī)變量的可能取值為、、,計(jì)算出隨機(jī)變量在不同取值下的概率,可得出隨機(jī)變量的概率分布列,利用數(shù)學(xué)期望公式可求得;

2)計(jì)算出每扇門(mén)被打開(kāi)的概率,然后利用獨(dú)立重復(fù)試驗(yàn)的概率公式可求得所求事件的概率.

1)由題意可知,隨機(jī)變量的可能取值為、、、,

,

,

所以隨機(jī)變量的分布列為:

所以隨機(jī)變量的數(shù)學(xué)期望;

2)由(1)可知,每扇門(mén)被打開(kāi)的概率為,

設(shè)恰好成功打開(kāi)四扇門(mén)為事件,則

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某同學(xué)自制了一套數(shù)學(xué)實(shí)驗(yàn)?zāi)P,該模型三視圖如圖所示.模型內(nèi)置一個(gè)與其各個(gè)面都相切的球,該模型及其內(nèi)球在同一方向有開(kāi)口裝置.實(shí)驗(yàn)的時(shí)候,隨機(jī)往模型中投擲大小相等,形狀相同的玻璃球,通過(guò)計(jì)算落在球內(nèi)的玻璃球數(shù)量,來(lái)估算圓周率的近似值.已知某次實(shí)驗(yàn)中,某同學(xué)一次投擲了個(gè)玻璃球,請(qǐng)你估算落在球內(nèi)的玻璃球數(shù)量(其中)( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某社區(qū)組織“學(xué)習(xí)強(qiáng)國(guó)”的知識(shí)競(jìng)賽,從參加競(jìng)賽的市民中抽出40人,將其成績(jī)分成以下6組:第1,第2,第3,第4,第5,第6,得到如圖所示的頻率分布直方圖.現(xiàn)采用分層抽樣的方法,從第2,3,4組中按分層抽樣抽取8人,則第2,3,4組抽取的人數(shù)依次為(

A.13,4B.2,3,3C.2,2,4D.1,1,6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司準(zhǔn)備上市一款新型轎車(chē)零配件,上市之前擬在其一個(gè)下屬4S店進(jìn)行連續(xù)30天的試銷,定價(jià)為1000/.

1)設(shè)日銷售40個(gè)零件的概率為,記5天中恰有2天銷售40個(gè)零件的概率為,寫(xiě)出關(guān)于的函數(shù)關(guān)系式,并求極大值點(diǎn).

2)試銷結(jié)束后統(tǒng)計(jì)得到該4S店這30內(nèi)的日銷售量(單位:件)的數(shù)據(jù)如下表:

日銷售量

40

60

80

100

頻數(shù)

9

12

其中,有兩個(gè)數(shù)據(jù)未給出.試銷結(jié)束后,這款零件正式上市,每件的定價(jià)仍為1000元,但生產(chǎn)公司對(duì)該款零件不零售,只提供零件的整箱批發(fā),大箱每箱有55件,批發(fā)價(jià)為550/件;小箱每箱有40件,批發(fā)價(jià)為600/件,以這30天統(tǒng)計(jì)的各日銷售量的頻率作為試銷后各日銷售量發(fā)生的概率.4S店決定每天批發(fā)兩箱,若同時(shí)批發(fā)大箱和小箱,則先銷售小箱內(nèi)的零件,同時(shí)根據(jù)公司規(guī)定,當(dāng)天沒(méi)銷售出的零件按批發(fā)價(jià)的9折轉(zhuǎn)給該公司的另一下屬4S店,假設(shè)日銷售量為80件的概率為,其中為(1)中的極大值點(diǎn).

i)設(shè)該4S店批發(fā)兩大箱,當(dāng)天這款零件的利潤(rùn)為隨機(jī)變量;批發(fā)兩小箱,當(dāng)天這款零件的利潤(rùn)為隨機(jī)變量,求;

ii)以日利潤(rùn)的數(shù)學(xué)期望作為決策依據(jù),該4S店每天應(yīng)該按什么方案批發(fā)零件?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直三棱柱ABCA1B1C1中,ACBC,D,E分別是A1B1,BC的中點(diǎn).求證:

1)平面ACD⊥平面BCC1B1

2B1E∥平面ACD

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知實(shí)數(shù),函數(shù).

(Ⅰ)證明:對(duì)任意,恒成立;

(Ⅱ)如果對(duì)任意均有,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)據(jù)的收集和整理在當(dāng)今社會(huì)起到了舉足輕重的作用,它用統(tǒng)計(jì)的方法來(lái)幫助人們分析以往的行為習(xí)慣,進(jìn)而指導(dǎo)人們接下來(lái)的行動(dòng).

某支足球隊(duì)的主教練打算從預(yù)備球員甲、乙兩人中選一人為正式球員,他收集到了甲、乙兩名球員近期5場(chǎng)比賽的傳球成功次數(shù),如下表:

場(chǎng)次

第一場(chǎng)

第二場(chǎng)

第三場(chǎng)

第四場(chǎng)

第五場(chǎng)

28

33

36

38

45

39

31

43

39

33

1)根據(jù)這兩名球員近期5場(chǎng)比賽的傳球成功次數(shù),完成莖葉圖(莖表示十位,葉表示個(gè)位);分別在平面直角坐標(biāo)系中畫(huà)出兩名球員的傳球成功次數(shù)的散點(diǎn)圖;

2)求出甲、乙兩名球員近期5場(chǎng)比賽的傳球成功次數(shù)的平均值和方差;

3)主教練根據(jù)球員每場(chǎng)比賽的傳球成功次數(shù)分析出球員在場(chǎng)上的積極程度和技術(shù)水平,同時(shí)根據(jù)多場(chǎng)比賽的數(shù)據(jù)也可以分析出球員的狀態(tài)和潛力.你認(rèn)為主教練應(yīng)選哪位球員?并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系xOy中曲線C的參數(shù)方程為為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,已知直線l過(guò)A,B兩點(diǎn),且這兩點(diǎn)的極坐標(biāo)分別為.

I)求C的普通方程和的直角坐標(biāo)方程;

II)若M為曲線C上一動(dòng)點(diǎn),求點(diǎn)M到直線l的最小距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)討論極值點(diǎn)個(gè)數(shù);

2)證明:不等式恒成立.

附:.

查看答案和解析>>

同步練習(xí)冊(cè)答案